Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2005_39_2_a0, author = {A. M. Vershik and M. I. Graev}, title = {A {Commutative} {Model} of a {Representation} of the {Group} $O(n,1)^X$ and a {Generalized} {Lebesgue} {Measure} in the {Space} of {Distributions}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--12}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a0/} }
TY - JOUR AU - A. M. Vershik AU - M. I. Graev TI - A Commutative Model of a Representation of the Group $O(n,1)^X$ and a Generalized Lebesgue Measure in the Space of Distributions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2005 SP - 1 EP - 12 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a0/ LA - ru ID - FAA_2005_39_2_a0 ER -
%0 Journal Article %A A. M. Vershik %A M. I. Graev %T A Commutative Model of a Representation of the Group $O(n,1)^X$ and a Generalized Lebesgue Measure in the Space of Distributions %J Funkcionalʹnyj analiz i ego priloženiâ %D 2005 %P 1-12 %V 39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a0/ %G ru %F FAA_2005_39_2_a0
A. M. Vershik; M. I. Graev. A Commutative Model of a Representation of the Group $O(n,1)^X$ and a Generalized Lebesgue Measure in the Space of Distributions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 1-12. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a0/
[1] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR
[2] Vershik A. M., Gelfand I. M., Graev M. I., “Neprivodimye predstavleniya gruppy $G^X$ i kogomologii”, Funkts. analiz i ego pril., 8:2 (1974), 67–69 | MR | Zbl
[3] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya gruppy $SL(2,R)$, gde $R$ — koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR
[4] Vershik A. M., Gelfand I. M., Graev M. I., “Kommutativnaya model osnovnogo predstavleniya gruppy $GL(2,\mathbb R)^X$ otnositelno unipotentnoi podgruppy”, Teoretiko-gruppovye metody v fizike, t. 2, Nauka, M., 1983, 472–487
[5] Vershik A. M., Gelfand I. M., Graev M. I., “Kommutativnaya model predstavleniya gruppy tokov $SL(2,\mathbb R)^X$, svyazannaya s unipotentnoi podgruppoi”, Funkts. analiz i ego pril., 17:2 (1983), 70–72 | MR | Zbl
[6] Gelfand I. M., Graev M. I., Vershik A. M., “Models of representations of current groups”, Representations of Lie groups and Lie algebras (Budapest, 1971), Akad. Kiadó, Budapest, 1985, 121–179 | MR
[7] Gelfand I. M., Vilenkin N. Ya., Nekotorye primeneniya garmonicheskogo analiza. Obobschennye gilbertovy prostranstva, Fizmatgiz, M., 1951
[8] Tsilevich N., Vershik A., Yor M., “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185:1 (2001), 274–296 | DOI | MR | Zbl
[9] Vershik A. M., Karpushev S. I., “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Matem. sb., 119:4 (1982), 521–533 | MR | Zbl
[10] Shalom Y., “Rigidity, unitary representation of semisimple groups and fundamental groups of manifold with rank one transformation group”, Ann. of Math. (2), 152 (2000), 113–182 | DOI | MR | Zbl
[11] Kuhn G., Vershik A., “Canonical semigroups of states and cocycles for the group of automorphisms of a homogeneous tree”, Algebr. Represent. Theory, 6:3 (2003), 333–352 | DOI | MR | Zbl
[12] Olshanskii G. I., “Sfericheskie funktsii i kharaktery na gruppe $U(\infty)$”, UMN, 37:2 (1982), 217–218 | MR
[13] Beitmen G., Erdeii L., Vysshie transtsendentnye funktsii, t. 2, Fizmatgiz, M., 1974
[14] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, t. 2, Nauka, M., 1973 | MR