Multishifts in Hilbert Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 69-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study a multishift structure in a Hilbert space. This structure is a noncommutative analog of the (simple one-sided) shift operator, well known in function theory and functional analysis. Subspaces invariant under the multishift are described. A theorem on the factorization into an inner and an outer factor is established for operators commuting with the multishift.
Keywords: Hilbert space, shift operator, multishift, invariant subspace, wandering subspace, factorization theorem.
@article{FAA_2005_39_1_a5,
     author = {P. A. Terekhin},
     title = {Multishifts in {Hilbert} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {69--81},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a5/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Multishifts in Hilbert Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 69
EP  - 81
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a5/
LA  - ru
ID  - FAA_2005_39_1_a5
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Multishifts in Hilbert Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 69-81
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a5/
%G ru
%F FAA_2005_39_1_a5
P. A. Terekhin. Multishifts in Hilbert Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 69-81. http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a5/

[1] Beurling A., “On two problems concerning linear transformations on Hilbert spaces”, Acta Math., 81 (1949), 239–255 | DOI | MR | Zbl

[2] Halmos P. R., “Shifts on Hilbert spaces”, J. Reine Angew. Math., 208 (1961), 102–112 | DOI | MR | Zbl

[3] Terekhin P. A., “O predstavlyayuschikh svoistvakh sistemy szhatii i sdvigov funktsii na otrezke”, Izv. Tulsk. gos. un-ta, ser. matem., mekh., inform., 4:1 (1998), 136–138 | MR

[4] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[6] Eckmann B., “Gruppentheoretischer Beweis des Satzes von Hurwitz–Radon über die Komposition quadratischer Formen”, Comm. Math. Helv., 15 (1942/43), 358–366 | DOI | MR

[7] Shvarts Dzh., Differentsialnaya geometriya i topologiya, Mir, M., 1970 | Zbl

[8] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl

[9] Lambert D., Ronveaux A., “Toward new solutions of the general Hurwitz problem”, J. Phys. A, 26 (1993), 945–948 | DOI | MR

[10] Terekhin P. A., “Trigonometricheskie algebry”, Zap. nauchn. semin. POMI, 236, 1997, 183–191 | MR | Zbl

[11] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | Zbl

[12] Terekhin P. A., “O multiplikativnoi strukture tsentralizatora multisdviga v gilbertovom prostranstve”, Matematika. Mekhanika, Sb. nauch. trudov, vyp. 2, Izd-vo Sarat. un-ta, Saratov, 2000, 119–122

[13] Terekhin P. A., “Bazisy Rissa, porozhdennye szhatiyami i sdvigami funktsii na otrezke”, Matem. zametki, 72:4 (2002), 547–560 | DOI | MR | Zbl