The Geometric Structure of Chebyshev Sets in $\ell^\infty(n)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 1-10

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $M$ of a normed linear space $X$ is called a Chebyshev set if each $x\in X$ has a unique nearest point in $M$. We characterize Chebyshev sets in $\ell^\infty(n)$ in geometric terms and study the approximative properties of sections of Chebyshev sets, suns, and strict suns in $\ell^\infty(n)$ by coordinate subspaces.
Keywords: Chebyshev set, sun, strict sun, best approximation.
@article{FAA_2005_39_1_a0,
     author = {A. R. Alimov},
     title = {The {Geometric} {Structure} of {Chebyshev} {Sets} in $\ell^\infty(n)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - The Geometric Structure of Chebyshev Sets in $\ell^\infty(n)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 1
EP  - 10
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a0/
LA  - ru
ID  - FAA_2005_39_1_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T The Geometric Structure of Chebyshev Sets in $\ell^\infty(n)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 1-10
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a0/
%G ru
%F FAA_2005_39_1_a0
A. R. Alimov. The Geometric Structure of Chebyshev Sets in $\ell^\infty(n)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/FAA_2005_39_1_a0/