Elliptic Boundary Value Problems in Hybrid Domains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 55-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive asymptotic transmission conditions at points where segments are attached to a three-dimensional body. These conditions result in a formally self-adjoint problem on a hybrid set with properties similar to those of standard boundary value problems. In particular, the problem has a zero index and possesses a variational statement. If the systems of differential equations have a special form, then the operator of the problem is realized as a self-adjoint extension of the “decoupled” operators of the problems on the body and the segments. From this viewpoint, we interpret the results of asymptotic analysis of coupled thin and solid bodies.
Mots-clés : hybrid domain, transmission conditions at points
Keywords: generalized Green formula, self-adjoint extension.
@article{FAA_2004_38_4_a5,
     author = {S. A. Nazarov},
     title = {Elliptic {Boundary} {Value} {Problems} in {Hybrid} {Domains}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--72},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Elliptic Boundary Value Problems in Hybrid Domains
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 55
EP  - 72
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a5/
LA  - ru
ID  - FAA_2004_38_4_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Elliptic Boundary Value Problems in Hybrid Domains
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 55-72
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a5/
%G ru
%F FAA_2004_38_4_a5
S. A. Nazarov. Elliptic Boundary Value Problems in Hybrid Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 55-72. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a5/

[1] Lumer G., “Connecting of local operators and evolution equation on network”, Lect. Notes in Math., 787, Springer-Verlag, 1980, 219–234 | DOI | MR

[2] Pavlov B. S., Faddeev M. D., “Model svobodnykh elektronov i teoriya rasseyaniya”, Teoret. i matem. fizika, 55:2 (1983), 257–269 | MR

[3] Roth J. P., “Le spectre du laplacien sur un graphe”, Lect. Notes in Math., 1096, Springer-Verlag, 1984, 521–539 | DOI | MR

[4] Penkin O. M., Pokornyi Yu. V., “O nekotorykh kachestvennykh svoistvakh uravnenii na odnomernom kletochnom komplekse”, Matem. zametki, 59:5 (1996), 777–780 | DOI | MR | Zbl

[5] Naimark K., Solomyak M., “Eigenvalue estimates for the weighted laplacian on metric trees”, Proc. Lond. Math. Soc., 80:3 (2000), 690–724 | DOI | MR | Zbl

[6] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN, ser. matem., 66:2 (2002), 81–148 | DOI | MR | Zbl

[7] Nazarov S. A., Plamenevskii B. A., “Obobschennaya formula Grina dlya ellipticheskikh zadach v oblastyakh s rebrami”, Problemy matem. analiza, 13, Izd-vo SPbGU, SPb, 1992, 106–147

[8] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[9] Kozlov V. A., Maz'ya V. G., Movchan A. B., “Asymptotic analysis of a mixed boundary value problem in a multistructure”, Asymptotic Analysis, 8 (1994), 105–143 | DOI | MR | Zbl

[10] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei. 1, 2”, Trudy seminara im. I. G. Petrovskogo, 18, Izd-vo MGU, M., 1995, 3–78 ; ibid, 20, Изд-во МГУ, М., 1997, 155–195 | MR

[11] Kozlov V. A., Maz'ya V. G., Movchan A. B., Asymptotic analysis of fields in multi-structures, Clarendon Press, Oxford, 1999 | MR | Zbl

[12] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl

[13] Nečas J., Les méthodes directes in théorie des équations elliptiques, Masson-Academia, Paris–Prague, 1967 | MR | Zbl

[14] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl

[15] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy MMO, 16, 1963, 219–292

[16] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR

[17] Nazarov S. A., Plamenevskii B. A., “Ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Matem. sb., 183:10 (1992), 13–44 | MR

[18] Pazy A., “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rat. Mech. Anal., 24:2 (1967), 193–218 | DOI | MR | Zbl

[19] Smirnov V. I., Kurs vysshei matematiki, t. 2, Nauka, M., 1967 | MR

[20] Pavlov B. S., “Teoriya rasshirenii i yavno reshaemye modeli”, UMN, 42:6 (1987), 99–132 | MR

[21] Nazarov S. A., “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v vesovykh funktsionalnykh prostranstvakh”, Matem. sb., 137:2 (1988), 224–241 | MR

[22] Rofe-Beketov F. S., “Samosopryazhennye rasshireniya differentsialnykh operatorov v prostranstve vektor-funktsii”, DAN SSSR, 184 (1969), 1034–1037 | MR | Zbl

[23] Gorbachuk V. I., Gorbachuk M. L., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[24] Nazarov S. A., “Korn's inequalities for junctions of spatial bodies and thin rods”, Math. Methods Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[25] Kozlov V. A., Maz'ya V. G., Movchan A. B., “Asymptotic representation of elastic fields in a multi-structure”, Asymptotic Analysis, 11 (1995), 343–415 | DOI | MR | Zbl

[26] Nazarov S. A., “Asimptotika reshenii zadachi teorii uprugosti dlya trekhmernogo tela s tonkimi otrostkami”, Dokl. RAN, 352:4 (1997), 458–461 | MR | Zbl

[27] Kozlov V. A., Maz'ya V. G., Movchan A. B., “Fields in non-degenerate 1D-3D elastic multi-structures”, Quart. J. Mech. Appl. Math., 54 (2001), 177–212 | DOI | MR | Zbl

[28] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | MR | Zbl