Contraction of Orbits in Random Dynamical Systems on the Circle
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 36-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a theoretical justification of the effect, observed in computer experiments, of convergence of orbits (without tending to any particular point) in random dynamical systems on the circle. The corresponding theorem is proved under certain assumptions satisfied, in particular, in some $C^1$-open domain in the space of random dynamical systems. It follows from this theorem that the corresponding skew product has two invariant measurable sections, naturally called an attractor and a repeller. Moreover, it turns out that convergence of orbits and the uniqueness of a stationary measure, phenomena that are mutually exclusive in the case of a single map, typically coexist in random dynamical systems.
Keywords: dynamics on the circle, random dynamical system, skew product, attractor.
@article{FAA_2004_38_4_a4,
     author = {V. A. Kleptsyn and M. B. Nalsky},
     title = {Contraction of {Orbits} in {Random} {Dynamical} {Systems} on the {Circle}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {36--54},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a4/}
}
TY  - JOUR
AU  - V. A. Kleptsyn
AU  - M. B. Nalsky
TI  - Contraction of Orbits in Random Dynamical Systems on the Circle
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 36
EP  - 54
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a4/
LA  - ru
ID  - FAA_2004_38_4_a4
ER  - 
%0 Journal Article
%A V. A. Kleptsyn
%A M. B. Nalsky
%T Contraction of Orbits in Random Dynamical Systems on the Circle
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 36-54
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a4/
%G ru
%F FAA_2004_38_4_a4
V. A. Kleptsyn; M. B. Nalsky. Contraction of Orbits in Random Dynamical Systems on the Circle. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 36-54. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a4/

[1] Kaijser T., “On stochastic perturbations of iterations of circle maps”, Phys. D, 68 (1993), 201–231 | DOI | MR | Zbl

[2] Shiryaev A. N., Veroyatnost, Nauka, M., 1980

[3] Le Jan Y., “Équilibre statistique pour les produits de difféomorphismes aléatiores indépendants”, Ann. Inst. H. Poincaré Probab. Statist., 23:1 (1987), 111–120 | MR | Zbl

[4] Furstenberg H., “Noncommuting random matrices products”, Trans. Amer. Math. Soc., 108 (1963), 377–428 | DOI | MR | Zbl

[5] Furstenberg H., “Boundary theory and stochastic processes on homogeneous spaces”, Proc. Sympos. Pure Math., 26, 1973, 193–229 | DOI | MR | Zbl

[6] Furstenberg H., Kesten H., “Products of random matrices”, Ann. Math. Stat., 31 (1960), 457–469 | DOI | MR | Zbl

[7] Furstenberg H., Kifer Yu., “Random matrix products and measures on projective spaces”, Israel J. Math., 46:1–2 (1983), 12–32 | DOI | MR | Zbl

[8] Kaimanovich V., Mazur H., “The Poisson boundary of the mapping class group”, Invent. Math., 125 (1996), 221–264 | DOI | MR | Zbl

[9] Crauel H., “Extremal exponents of random dynamical systems do not vanish”, J. Dynam. Differential Equations, 2:3 (1990), 245–291 | DOI | MR | Zbl

[10] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. analiz i ego pril., 33:2 (1999), 16–30 | DOI | MR

[11] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye svoistva kosykh proizvedenii nad podkovoi i solenoidom”, Trudy MIRAN, 231, 2000, 96–118 | MR

[12] Hutchinson J. E., “Fractals and self similarity”, Indiana Univ. Math. J., 30 (1981), 271–280 | DOI | MR

[13] Baxendale P. H., “Lyapunov exponents and relative entropy for a stochastic flow of diffeomorphisms”, Probab. Theory Related Fields, 81 (1989), 521–554 | DOI | MR | Zbl