Newton Polytopes, Increments, and Roots of Systems of Matrix Functions for Finite-Dimensional Representations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 22-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic root distribution is computed for systems of matrix functions associated with finite-dimensional holomorphic representations of a Lie group. This distribution can be expressed via the increments of the representations involved. If the group is reductive, then the number of equations in the system can be arbitrary, from 1 to the dimension of the group. In this case, the computation results are stated in the language of convex geometry. These computations imply the previously known formulas for the density of the solution variety of a system of exponential equations as well as for the number of solutions of a polynomial system and, more generally, of a system formed by matrix functions of representations of a complex reductive Lie group.
Keywords: matrix function, holomorphic representation, reductive Lie group, Lie algebra, current, asymptotic density, tropical ring, convex polytope.
Mots-clés : increment
@article{FAA_2004_38_4_a3,
     author = {B. Ya. Kazarnovskii},
     title = {Newton {Polytopes,} {Increments,} and {Roots} of {Systems} of {Matrix} {Functions} for {Finite-Dimensional} {Representations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--35},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a3/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - Newton Polytopes, Increments, and Roots of Systems of Matrix Functions for Finite-Dimensional Representations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 22
EP  - 35
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a3/
LA  - ru
ID  - FAA_2004_38_4_a3
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T Newton Polytopes, Increments, and Roots of Systems of Matrix Functions for Finite-Dimensional Representations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 22-35
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a3/
%G ru
%F FAA_2004_38_4_a3
B. Ya. Kazarnovskii. Newton Polytopes, Increments, and Roots of Systems of Matrix Functions for Finite-Dimensional Representations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 4, pp. 22-35. http://geodesic.mathdoc.fr/item/FAA_2004_38_4_a3/

[1] Bernshtein D. N., Kushnirenko A. G., Khovanskii A. G., “Mnogogranniki Nyutona”, UMN, 31:3 (1976), 201–201 | MR

[2] Kazarnovskii B. Ya., “O nulyakh eksponentsialnykh summ”, DAN SSSR, 257:4 (1981), 804–808 | MR | Zbl

[3] Kazarnovskii B. Ya., “Mnogogranniki Nyutona i korni sistem eksponentsialnykh summ”, Funkts. analiz i ego pril., 18:4 (1984), 40–49 | MR | Zbl

[4] Bedford E., Taylor B. A., “The Dirichlet problem for a complex Monge–Ampere equations”, Invent. Math., 37:2 (1976), 1–44 | DOI | MR | Zbl

[5] Kazarnovskii B. Ya., “Mnogogranniki Nyutona i formula Bezu dlya matrichnykh funktsii konechnomernykh predstavlenii”, Funkts. analiz i ego pril., 21:4 (1987), 73–74 | MR | Zbl

[6] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[7] Kazarnovskii B. Ya., “$c$-veery i mnogogranniki Nyutona algebraicheskikh mnogoobrazii”, Izv. RAN, 67:3 (2003), 23–44 | MR | Zbl

[8] McMullen P., “The polytope algebra”, Adv. Math., 78 (1989), 76–130 | DOI | MR | Zbl

[9] McMullen P., “On simple polytopes”, Invent. Math., 113 (1993), 419–444 | DOI | MR | Zbl

[10] Pukhlikov A. V., Khovanskii A. G., “Konechno additivnye mery virtualnykh mnogogrannikov”, Algebra i analiz, 4:2 (1992), 161–185 | MR

[11] Pukhlikov A. V., Khovanskii A. G., “Teorema Rimana–Rokha dlya integralov i summ kvazipolinomov po virtualnym mnogogrannikam”, Algebra i analiz, 4:4 (1992), 188–216 | MR | Zbl

[12] Fulton W., Sturmfels B., Intersection theory on toric varieties, http://arxiv.org/abs/math/9403002 | MR

[13] Brion M., “Piecewise polynomial functions, convex polytopes and enumerative geometry”, Banach Center Publ., 36, 1996, 25–44 | DOI | MR | Zbl

[14] Okunkov A., “Zamechanie o polinome Gilberta sfericheskogo prostranstva”, Funkts. analiz i ego pril., 31:2 (1997), 82–85 | DOI | MR

[15] Alesker S., “Hard Lefschets theorem for valuations, complex integral geometry, and unitarily invariant valuations”, J. Differential Geom., 63:1 (2003), 63–95 | DOI | MR | Zbl

[16] Ahlfors L., “The theory of meromorphic curves”, Acta Soc. Sci. Fenn., Ser. A, 1941, no. 3, 3–31 | MR | Zbl

[17] Kostant B., “On convexity, the Weyl group and the Iwasawa decomposition”, Ann. Sci. Ecol. Norm. Sup., 1973, no. 6, 413–455 | DOI | MR | Zbl

[18] Kazarnovskii B. Ya., “Eksponentsialnye analiticheskie mnozhestva”, Funkts. analiz i ego pril., 31:2 (1997), 15–26 | DOI | MR | Zbl