Mots-clés : perturbation, Jacobi matrix.
@article{FAA_2004_38_3_a5,
author = {M. Z. Solomyak},
title = {On the {Discrete} {Spectrum} of a {Family} of {Differential} {Operators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {70--78},
year = {2004},
volume = {38},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a5/}
}
M. Z. Solomyak. On the Discrete Spectrum of a Family of Differential Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 70-78. http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a5/
[1] Van Assche W., “Pollaczek polynomials and summability methods”, J. Math. Anal. Appl., 147 (1990), 498–505 | DOI | MR | Zbl
[2] Birman M. Sh., Solomyak M. Z., “Schrödinger operator. Estimates for number of bound states as function-theoretical problem”, Amer. Math. Soc. Transl. Ser. 2, 150, Amer. Math. Soc., Providence, R.I., 1992, 1–54 | MR
[3] Chihara T. S., An introduction to orthogonal polynomials, Gordon and Breach, 1978 | MR | Zbl
[4] Elaydi S. N., An introduction to difference equations, Springer-Verlag, New York, 1999 | MR | Zbl
[5] Fort T., Finite difference equations in the real domain, Oxford University Press, 1948 | MR | Zbl
[6] Geronimo J. S., “On the spectra of infinite-dimensional Jacobi matrices”, J. Approx. Theory, 53 (1988), 251–256 | DOI | MR
[7] Naboko S., Solomyak M., “On the absolutely continuous spectrum in a model of an irreversible quantum graph”, Proc. London Math. Soc. (3), 92:1 (2006), 251–272 | DOI | MR | Zbl
[8] Smilansky U., “Irreversible quantum graphs”, Waves Random Media, 14 (2004), 143–153 | DOI | MR
[9] Solomyak M., “On a differential operator appearing in the theory of irreversible quantum graphs”, Waves Random Media, 14 (2004), 173–185 | DOI | MR