Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 39-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonself-adjoint nondissipative trace class additive perturbations $L=A+iV$ of a bounded self-adjoint operator $A$ in a Hilbert space $H$. The main goal is to study the properties of the singular spectral subspace $N_i^0$ of $L$ corresponding to part of the real singular spectrum and playing a special role in spectral theory of nonself-adjoint nondissipative operators. To some extent, the properties of $N_i^0$ resemble those of the singular spectral subspace of a self-adjoint operator. Namely, we prove that $L$ and the adjoint operator $L^*$ are weakly annihilated by some scalar bounded outer analytic functions if and only if both of them satisfy the condition $N_i^0=H$. This is a generalization of the well-known Cayley identity to nonself-adjoint operators of the above-mentioned class.
Keywords: nonself-adjoint operator, Lagrange optimality principle, functional model, annihilator, almost Hermitian spectrum.
@article{FAA_2004_38_3_a3,
     author = {A. V. Kiselev and S. N. Naboko},
     title = {Nonself-Adjoint {Operators} with {Almost} {Hermitian} {Spectrum:} {Weak} {Annihilators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--51},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a3/}
}
TY  - JOUR
AU  - A. V. Kiselev
AU  - S. N. Naboko
TI  - Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 39
EP  - 51
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a3/
LA  - ru
ID  - FAA_2004_38_3_a3
ER  - 
%0 Journal Article
%A A. V. Kiselev
%A S. N. Naboko
%T Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 39-51
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a3/
%G ru
%F FAA_2004_38_3_a3
A. V. Kiselev; S. N. Naboko. Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 39-51. http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a3/

[1] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[2] Brodskii M. S., Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[3] Veselov V. F., Spektralnye razlozheniya nesamosopryazhennykh operatorov s singulyarnym spektrom, Diss. k.f.-m.n., L., 1986

[4] Veselov V. F., “Ob otdelimosti absolyutno nepreryvnogo i singulyarnogo podprostranstv nedissipativnogo operatora”, Vestnik LGU, ser. 1, 1988, no. 2, 11–17 | MR

[5] Veselov V. F., “Ob otdelimosti invariantnykh podprostranstv nedissipativnogo operatora”, Vestnik LGU, ser. 1, 1988, no. 4, 19–24 | MR

[6] Veselov V. F., Naboko S. N., “Opredelitel kharakteristicheskoi funktsii i singulyarnyi spektr nesamosopryazhennogo operatora”, Matem. sb., 129(171):1 (1986), 20–39 | MR | Zbl

[7] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[8] Danford N., Shvarts Dzh. T., Lineinye operatory. Ch. I: obschaya teoriya, IL, M., 1962

[9] Kapustin V. V., “Operatory, blizkie k unitarnym, i ikh funktsionalnye modeli. I”, Zap. nauchn. semin. POMI, 255, 1998, 82–91 | MR | Zbl

[10] Kapustin V. V., “Spektralnyi analiz pochti unitarnykh operatorov”, Algebra i analiz, 13:5 (2001), 44–68 | MR | Zbl

[11] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[12] Kiselev A. V., “Some Spectral Properties of the Non-Self-Adjoint Friedrichs Model Operator”, Math. Proc. of Royal Irish Academy, 105A:2 (2005), 25–46 ; http://www.maths.kst.dit.ie/preprints/preprints.html | DOI | MR | Zbl

[13] Makarov N. G., Vasjunin V. I., “A model for noncontractions and stability of the continuous spectrum”, Lect. Notes in Math., 864, 1981, 365–412 | DOI | MR | Zbl

[14] Naboko S. N., “Absolyutno nepreryvnyi spektr nedissipativnogo operatora i funktsionalnaya model I”, Zap. nauchn. semin. LOMI, 65, 1976, 90–102 | MR | Zbl

[15] Naboko S. N., “Absolyutno nepreryvnyi spektr nedissipativnogo operatora i funktsionalnaya model II”, Zap. nauchn. semin. LOMI, 73, 1977, 118–135 | MR | Zbl

[16] Naboko S. N., “Funktsionalnaya model teorii vozmuschenii i ee prilozhenie k teorii rasseyaniya”, Trudy MIAN, 147, 1980, 86–114 | MR | Zbl

[17] Naboko S. N., “O singulyarnom spektre nesamosopryazhennogo operatora”, Zap. nauchn. semin. LOMI, 113, 1981, 149–177 | MR | Zbl

[18] Naboko S. N., “Similarity problem and the structure of the singular spectrum of non-dissipative operators”, Lect. Notes in Math., 1043, 1984, 147–151

[19] Nikolski N. K., Operators, Functions and Systems: An Easy Reading, Vol. I, II, Amer. Math. Soc., 2002 | MR

[20] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[21] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR, ser. matem., 39 (1975), 123–148 | MR | Zbl

[22] Romanov R. V., “A remark on equivalence of weak and strong definitions of the absolutely continuous subspace for nonself-adjoint operators”, Spectral methods for operators of mathematical physics, Oper. Theory Adv. Appl., 154, Birkhäuser, Basel, 2004, 179–184 | MR | Zbl

[23] Ryzhov V. A., Absolyutno nepreryvnoe podprostranstvo nesamosopryazhennogo operatora i teoriya rasseyaniya, Diss. k.f.-m.n., SPb., 1994

[24] Sakhnovich L. A., “Neunitarnye operatory s absolyutno nepreryvnym spektrom”, Izv. AN SSSR, ser. matem., 33 (1969), 52–64 | Zbl

[25] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR