Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 39-51
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider nonself-adjoint nondissipative trace class additive perturbations $L=A+iV$ of a bounded self-adjoint operator $A$ in a Hilbert space $H$. The main goal is to study the properties of the singular spectral subspace $N_i^0$ of $L$ corresponding to part of the real singular spectrum and playing a special role in spectral theory of nonself-adjoint nondissipative operators.
To some extent, the properties of $N_i^0$ resemble those of the singular spectral subspace of a self-adjoint operator. Namely, we prove that $L$ and the adjoint operator $L^*$ are weakly annihilated by some scalar bounded outer analytic functions if and only if both of them satisfy the condition $N_i^0=H$. This is a generalization of the well-known Cayley identity to nonself-adjoint operators of the above-mentioned class.
Keywords:
nonself-adjoint operator, Lagrange optimality principle, functional model, annihilator, almost Hermitian spectrum.
@article{FAA_2004_38_3_a3,
author = {A. V. Kiselev and S. N. Naboko},
title = {Nonself-Adjoint {Operators} with {Almost} {Hermitian} {Spectrum:} {Weak} {Annihilators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {39--51},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a3/}
}
TY - JOUR AU - A. V. Kiselev AU - S. N. Naboko TI - Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2004 SP - 39 EP - 51 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a3/ LA - ru ID - FAA_2004_38_3_a3 ER -
A. V. Kiselev; S. N. Naboko. Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 3, pp. 39-51. http://geodesic.mathdoc.fr/item/FAA_2004_38_3_a3/