When Is a Sum of Partial Reflections Equal to a Scalar Operator?
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 91-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the set $\widetilde{W}_n$ of values of the parameter $\alpha\in\mathbb{R}$ for which there exists a Hilbert space $H$ and $n$ partial reflections $A_1,\dots,A_n$ (self-adjoint operators such that $A_k^3=A_k$ or, which is the same, self-adjoint operators whose spectra belong to the set $\{-1,0,1\}$) whose sum is equal to the scalar operator $\alpha I_H$.
Keywords:
projection, reflection, partial reflection, self-adjoint operator, *-representation.
@article{FAA_2004_38_2_a9,
author = {A. S. Mellit and V. I. Rabanovich and Yu. S. Samoilenko},
title = {When {Is} a {Sum} of {Partial} {Reflections} {Equal} to a {Scalar} {Operator?}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {91--94},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a9/}
}
TY - JOUR AU - A. S. Mellit AU - V. I. Rabanovich AU - Yu. S. Samoilenko TI - When Is a Sum of Partial Reflections Equal to a Scalar Operator? JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2004 SP - 91 EP - 94 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a9/ LA - ru ID - FAA_2004_38_2_a9 ER -
%0 Journal Article %A A. S. Mellit %A V. I. Rabanovich %A Yu. S. Samoilenko %T When Is a Sum of Partial Reflections Equal to a Scalar Operator? %J Funkcionalʹnyj analiz i ego priloženiâ %D 2004 %P 91-94 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a9/ %G ru %F FAA_2004_38_2_a9
A. S. Mellit; V. I. Rabanovich; Yu. S. Samoilenko. When Is a Sum of Partial Reflections Equal to a Scalar Operator?. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 2, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_2004_38_2_a9/