Circles and Clifford Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 56-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a smooth map of a neighborhood of the origin in a real vector space into a neighborhood of the origin in a Euclidean space. Suppose that this map takes all germs of lines passing through the origin to germs of Euclidean circles, or lines, or a point. We prove that under some simple additional assumptions this map takes all lines passing though the origin to the same circles as a Hopf map coming from a representation of a Clifford algebra. We also describe a connection between our result and the Hurwitz–Radon theorem about sums of squares.
Keywords: line, circle, Clifford algebra, Hopf map.
@article{FAA_2004_38_1_a4,
     author = {V. A. Timorin},
     title = {Circles and {Clifford} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a4/}
}
TY  - JOUR
AU  - V. A. Timorin
TI  - Circles and Clifford Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 56
EP  - 64
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a4/
LA  - ru
ID  - FAA_2004_38_1_a4
ER  - 
%0 Journal Article
%A V. A. Timorin
%T Circles and Clifford Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 56-64
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a4/
%G ru
%F FAA_2004_38_1_a4
V. A. Timorin. Circles and Clifford Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 56-64. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a4/

[1] Khovanskii G. S., Osnovy nomografii, Nauka, M., 1976 | MR

[2] Khovanskii A. G., “Vypryamlenie okruzhnostei”, Sib. matem. zhurnal, 21 (1980), 221–226 | MR

[3] Izadi F. A., Rectification of circles, spheres, and classical geometries, PhD thesis, University of Toronto, 2001 | MR

[4] Timorin V. A., Maps that take lines to circles, in dimension 4, Preprint http://www.arXiv.org/math.DG/abs/0309053

[5] Timorin V. A., “Rectification of circles and quaternions”, Michigan Math. J., 51 (2003), 153–167 | DOI | MR | Zbl

[6] Cartan É., “Nombres complexes”, Encyclopédie des sciences mathématiques, Tome I, Vol. 1, Fasc. 4, art. 15, ed. J. Molk, 1908, 329–448; reprinted in: Cartan É., ØE uvres complètes, Partie II, Gauthier-Villars, Paris, 1953, 107–246 | MR

[7] Atiyah M. F., Bott R., Shapiro A., “Clifford modules”, Topology, 3, suppl. 1 (1964), 3–38 ; reprinted in: Bott R., Lectures on $K(X)$, Benjamin, New York, 1969, 143–178 ; reprinted in: Atiyah M., Collected Works, Vol. 2, Clarendon Press, Oxford, 1988, 301–336 | DOI | MR | Zbl | MR | MR

[8] Yiu P., “Quadratic forms between spheres and the non-existence of sums of squares formulae”, Math. Proc. Cambridge Philos. Soc., 100 (1986), 493–504 | DOI | MR | Zbl

[9] Timorin V. A., Circles and quadratic maps between spheres, Preprint http://www.arXiv.org/math.MG/abs/0212098 | MR

[10] Hurwitz A., “Über die Komposition der quadratischen Formen”, Math. Ann., 88 (1923), 1–25 ; reprinted in: Math. Werke, Bd. II, Birkhauser-Verlag, Basel–Stuttgart, 1963, 641–666 | DOI | MR | DOI | MR

[11] Radon J., “Lineare Scharen orthogonaler Matrizen”, Abh. Math. Sem. Univ. Hamburg, 1 (1922), 1–14 | DOI | MR

[12] Shapiro D. B., Compositions of Quadratic Forms, de Gruyter Expositions in Math., 33, 2000 | MR | Zbl