Circles and Clifford Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 56-64

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a smooth map of a neighborhood of the origin in a real vector space into a neighborhood of the origin in a Euclidean space. Suppose that this map takes all germs of lines passing through the origin to germs of Euclidean circles, or lines, or a point. We prove that under some simple additional assumptions this map takes all lines passing though the origin to the same circles as a Hopf map coming from a representation of a Clifford algebra. We also describe a connection between our result and the Hurwitz–Radon theorem about sums of squares.
Keywords: line, circle, Clifford algebra, Hopf map.
@article{FAA_2004_38_1_a4,
     author = {V. A. Timorin},
     title = {Circles and {Clifford} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a4/}
}
TY  - JOUR
AU  - V. A. Timorin
TI  - Circles and Clifford Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 56
EP  - 64
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a4/
LA  - ru
ID  - FAA_2004_38_1_a4
ER  - 
%0 Journal Article
%A V. A. Timorin
%T Circles and Clifford Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 56-64
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a4/
%G ru
%F FAA_2004_38_1_a4
V. A. Timorin. Circles and Clifford Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 56-64. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a4/