On Random Attractors for Mixing Type Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 34-46
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with infinite-dimensional random dynamical systems. Under the condition that the system in question is of mixing type and possesses a random compact attracting set, we show that the support of the unique invariant measure is the minimal random point attractor. The results obtained apply to the randomly forced 2D Navier–Stokes system.
Keywords:
invariant measure, mixing type system, random attractor, stationary measure, 2D Navier–Stokes equations.
@article{FAA_2004_38_1_a2,
author = {S. B. Kuksin and A. R. Shirikyan},
title = {On {Random} {Attractors} for {Mixing} {Type} {Systems}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {34--46},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a2/}
}
S. B. Kuksin; A. R. Shirikyan. On Random Attractors for Mixing Type Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 34-46. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a2/