On Random Attractors for Mixing Type Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 34-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with infinite-dimensional random dynamical systems. Under the condition that the system in question is of mixing type and possesses a random compact attracting set, we show that the support of the unique invariant measure is the minimal random point attractor. The results obtained apply to the randomly forced 2D Navier–Stokes system.
Keywords: invariant measure, mixing type system, random attractor, stationary measure, 2D Navier–Stokes equations.
@article{FAA_2004_38_1_a2,
     author = {S. B. Kuksin and A. R. Shirikyan},
     title = {On {Random} {Attractors} for {Mixing} {Type} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a2/}
}
TY  - JOUR
AU  - S. B. Kuksin
AU  - A. R. Shirikyan
TI  - On Random Attractors for Mixing Type Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2004
SP  - 34
EP  - 46
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a2/
LA  - ru
ID  - FAA_2004_38_1_a2
ER  - 
%0 Journal Article
%A S. B. Kuksin
%A A. R. Shirikyan
%T On Random Attractors for Mixing Type Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2004
%P 34-46
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a2/
%G ru
%F FAA_2004_38_1_a2
S. B. Kuksin; A. R. Shirikyan. On Random Attractors for Mixing Type Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 38 (2004) no. 1, pp. 34-46. http://geodesic.mathdoc.fr/item/FAA_2004_38_1_a2/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[2] Revyuz D., Tsepi Markova, Yanus-K, M., 1997

[3] Arnold L., Random Dynamical Systems, Springer-Verlag, Berlin, 1998 | MR

[4] Bricmont J., Kupiainen A., Lefevere R., “Exponential mixing for the 2D stochastic Navier–Stokes dynamics”, Comm. Math. Phys., 230:1 (2002), 87–132 | DOI | MR | Zbl

[5] Crauel H., Debussche A., Flandoli F., “Random attractors”, J. Dynam. Diff. Eq., 9:2 (1997), 307–341 | DOI | MR | Zbl

[6] Crauel H., “Markov measures for random dynamical systems”, Stochastics Rep., 37:3 (1991), 153–173 | DOI | MR | Zbl

[7] Crauel H., “Random point attractors versus random set attractors”, J. London Math. Soc. (2), 63:2 (2001), 413–427 | DOI | MR | Zbl

[8] Chepyzhov V., Vishik M., “A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations”, Indiana Univ. Math. J., 42:3 (1993), 1057–1076 | DOI | MR | Zbl

[9] Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Coll. Publ., 49, Amer. Math. Soc., Providence, 2002 | MR | Zbl

[10] Debussche A., “Hausdorff dimension of a random invariant set”, J. Math. Pures Appl. (9), 77:10 (1998), 967–988 | DOI | MR | Zbl

[11] E W., Mattingly J. C., Sinai Ya. G., “Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation”, Comm. Math. Phys., 224 (2001), 83–106 | DOI | MR | Zbl

[12] Kuksin S. B., Shirikyan A., “Stochastic dissipative PDE's and Gibbs measures”, Comm. Math. Phys., 213 (2000), 291–330 | DOI | MR | Zbl

[13] Kuksin S. B., Shirikyan A., “A coupling approach to randomly forced nonlinear PDE's. I”, Comm. Math. Phys., 221 (2001), 351–366 | DOI | MR | Zbl

[14] Kuksin S. B., Shirikyan A., “Coupling approach to white-forced nonlinear PDE's”, J. Math. Pures Appl., 81 (2002), 567–602 | DOI | MR | Zbl

[15] Le Jan Y., “Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants”, Ann. Inst. H. Poincaré Probab. Statist., 23:1 (1987), 111–120 | MR | Zbl

[16] Ledrappier F., “Positivity of the exponent for stationary sequences of matrices”, Lyapunov Exponents (Bremen, 1984), Lect. Notes in Math., 1186, Springer-Verlag, Berlin, 1986, 56–73 | DOI | MR