The Generalized Moment Problem Associated with Correlation Measures
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 4, pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical power moment problem can be viewed as a theory of spectral representations of a positive functional on some classical commutative algebra with involution. We generalize this approach to the case in which the algebra is a special commutative algebra of functions on the space of multiple finite configurations. If the above-mentioned functional is generated by a measure on the space of finite ordinary configurations, then this measure is the correlation measure for a measure on the space of infinite configurations. The positiveness of the functional gives conditions for the measure to be a correlation measure.
Mots-clés : convolution
Keywords: positive functional, generalized joint eigenvector, correlation measure.
@article{FAA_2003_37_4_a11,
     author = {Yu. M. Berezanskii},
     title = {The {Generalized} {Moment} {Problem} {Associated} with {Correlation} {Measures}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--91},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a11/}
}
TY  - JOUR
AU  - Yu. M. Berezanskii
TI  - The Generalized Moment Problem Associated with Correlation Measures
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 86
EP  - 91
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a11/
LA  - ru
ID  - FAA_2003_37_4_a11
ER  - 
%0 Journal Article
%A Yu. M. Berezanskii
%T The Generalized Moment Problem Associated with Correlation Measures
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 86-91
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a11/
%G ru
%F FAA_2003_37_4_a11
Yu. M. Berezanskii. The Generalized Moment Problem Associated with Correlation Measures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 4, pp. 86-91. http://geodesic.mathdoc.fr/item/FAA_2003_37_4_a11/

[1] Berezansky Yu. M., “Some generalizations of the classical moment problem”, Integral Equations Operator Theory, 44 (2002), 255–289 | DOI | MR | Zbl

[2] Kondratiev Yu. G., Kuna T., Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:2 (2002), 201–233 ; препринт, Bonn University, 1999 | DOI | MR | Zbl

[3] Berezansky Yu. M., Kondratiev Yu. G., Kuna T., Lytvynov E., “On a spectral representation for correlation measures in configuration space analysis”, Methods Funct. Anal. Topology, 5:4 (1999), 87–100 | MR | Zbl

[4] Gelfand I. M., Kostyuchenko A. G., DAN SSSR, 103:3 (1955), 349–352 | MR

[5] Berezanskii Yu. M., DAN SSSR, 108:3 (1956), 379–382 | MR | Zbl

[6] Berezanskii Yu. M., DAN SSSR, 110:6 (1956), 893–896 | MR | Zbl

[7] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[8] Lenard A., “States of classical statistical mechanical systems of infinitely many particles. II: Characterization of correlation measures”, Arch. Rational Mech. Anal., 59 (1975), 241–256 | DOI | MR

[9] Berezanskii Yu. M., Kondratev Yu. G., Spektralnye metody v beskonechnomernom analize, Naukova dumka, Kiev, 1988 | MR | Zbl