Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2003_37_3_a8, author = {S. M. Malamud}, title = {An {Analog} of the {Poincar\'e} {Separation} {Theorem} for {Normal} {Matrices} and the {Gauss--Lucas} {Theorem}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {85--88}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/} }
TY - JOUR AU - S. M. Malamud TI - An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 85 EP - 88 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/ LA - ru ID - FAA_2003_37_3_a8 ER -
S. M. Malamud. An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 85-88. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/
[1] de Bruijn N. G., Springer T. A., “On the zeros of a polynomial and of its derivative, II”, Indag. Math., 9 (1947), 264–270 | MR
[2] Malamud M. M., Ukr. matem. zh., 44:12 (1992), 1658–1688 | MR | Zbl
[3] Malamud S. M., “A converse to the Jensen inequality, its matrix extensions and inequalities for minors and eigenvalues”, Linear Algebra Appl., 322 (2001), 19–41 | DOI | MR | Zbl
[4] Malamud S. M., “Operatornye neravenstva, obratnye k neravenstvu Iensena”, Matem. zametki, 69:4 (2001), 633–637 | DOI | MR | Zbl
[5] Markus A. S., “Sobstvennye i singulyarnye chisla summy i proizvedeniya lineinykh operatorov”, UMN, 19:4(118) (1964), 93–123 | MR | Zbl
[6] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR
[7] Marshall A. W., Olkin I., Inequalities: Theory of Majorization and Its applications, Academic Press, 1979 | MR
[8] Polia G., Sege G., Zadachi i teoremy iz analiza, Nauka, M., 1978 | MR
[9] Khardi G., Littlvud Dzh., Poia G., Neravenstva, IL, M., 1948
[10] Horn R., Johnson Ch., Matrix Analysis, Cambridge, 1986 | MR
[11] Pawlowski P., “On the zeros of a polynomial and its derivatives”, Trans. Amer. Math. Soc., 350:11 (1998), 4461–4472 | DOI | MR | Zbl
[12] Schmeisser G., “The conjectures of Sendov and Smale. Approximation theory”, Approximation Theory: A volume dedicated to Blagovest Sendov, DARBA, Sofia, 2002, 353–369 | MR | Zbl
[13] Schoenberg I., “A conjectured analogue of Rolle's theorem for polynomials with real or complex coefficients”, Amer. Math. Monthly, 93 (1986), 8–13 | DOI | MR | Zbl