An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 85-88
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish an analog of the Cauchy–Poincaré separation theorem for normal matrices in terms of majorization. A solution to the inverse spectral problem (Borg type result) is also presented. Using this result, we generalize and
extend the Gauss–Lucas theorem about the location of roots of a complex polynomial and of its derivative. The generalization is applied to prove old conjectures due to de Bruijn–Springer and Schoenberg.
Mots-clés :
normal matrix
Keywords: majorization, zeros of polynomials, Gauss–Lucas theorem, Cauchy–Poincaré separation theorem, inverse problem.
Keywords: majorization, zeros of polynomials, Gauss–Lucas theorem, Cauchy–Poincaré separation theorem, inverse problem.
@article{FAA_2003_37_3_a8,
author = {S. M. Malamud},
title = {An {Analog} of the {Poincar\'e} {Separation} {Theorem} for {Normal} {Matrices} and the {Gauss--Lucas} {Theorem}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--88},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/}
}
TY - JOUR AU - S. M. Malamud TI - An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 85 EP - 88 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/ LA - ru ID - FAA_2003_37_3_a8 ER -
S. M. Malamud. An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 85-88. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/