An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 85-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an analog of the Cauchy–Poincaré separation theorem for normal matrices in terms of majorization. A solution to the inverse spectral problem (Borg type result) is also presented. Using this result, we generalize and extend the Gauss–Lucas theorem about the location of roots of a complex polynomial and of its derivative. The generalization is applied to prove old conjectures due to de Bruijn–Springer and Schoenberg.
Mots-clés : normal matrix
Keywords: majorization, zeros of polynomials, Gauss–Lucas theorem, Cauchy–Poincaré separation theorem, inverse problem.
@article{FAA_2003_37_3_a8,
     author = {S. M. Malamud},
     title = {An {Analog} of the {Poincar\'e} {Separation} {Theorem} for {Normal} {Matrices} and the {Gauss--Lucas} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--88},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/}
}
TY  - JOUR
AU  - S. M. Malamud
TI  - An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 85
EP  - 88
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/
LA  - ru
ID  - FAA_2003_37_3_a8
ER  - 
%0 Journal Article
%A S. M. Malamud
%T An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 85-88
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/
%G ru
%F FAA_2003_37_3_a8
S. M. Malamud. An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 85-88. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/

[1] de Bruijn N. G., Springer T. A., “On the zeros of a polynomial and of its derivative, II”, Indag. Math., 9 (1947), 264–270 | MR

[2] Malamud M. M., Ukr. matem. zh., 44:12 (1992), 1658–1688 | MR | Zbl

[3] Malamud S. M., “A converse to the Jensen inequality, its matrix extensions and inequalities for minors and eigenvalues”, Linear Algebra Appl., 322 (2001), 19–41 | DOI | MR | Zbl

[4] Malamud S. M., “Operatornye neravenstva, obratnye k neravenstvu Iensena”, Matem. zametki, 69:4 (2001), 633–637 | DOI | MR | Zbl

[5] Markus A. S., “Sobstvennye i singulyarnye chisla summy i proizvedeniya lineinykh operatorov”, UMN, 19:4(118) (1964), 93–123 | MR | Zbl

[6] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[7] Marshall A. W., Olkin I., Inequalities: Theory of Majorization and Its applications, Academic Press, 1979 | MR

[8] Polia G., Sege G., Zadachi i teoremy iz analiza, Nauka, M., 1978 | MR

[9] Khardi G., Littlvud Dzh., Poia G., Neravenstva, IL, M., 1948

[10] Horn R., Johnson Ch., Matrix Analysis, Cambridge, 1986 | MR

[11] Pawlowski P., “On the zeros of a polynomial and its derivatives”, Trans. Amer. Math. Soc., 350:11 (1998), 4461–4472 | DOI | MR | Zbl

[12] Schmeisser G., “The conjectures of Sendov and Smale. Approximation theory”, Approximation Theory: A volume dedicated to Blagovest Sendov, DARBA, Sofia, 2002, 353–369 | MR | Zbl

[13] Schoenberg I., “A conjectured analogue of Rolle's theorem for polynomials with real or complex coefficients”, Amer. Math. Monthly, 93 (1986), 8–13 | DOI | MR | Zbl