An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 85-88

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an analog of the Cauchy–Poincaré separation theorem for normal matrices in terms of majorization. A solution to the inverse spectral problem (Borg type result) is also presented. Using this result, we generalize and extend the Gauss–Lucas theorem about the location of roots of a complex polynomial and of its derivative. The generalization is applied to prove old conjectures due to de Bruijn–Springer and Schoenberg.
Mots-clés : normal matrix
Keywords: majorization, zeros of polynomials, Gauss–Lucas theorem, Cauchy–Poincaré separation theorem, inverse problem.
@article{FAA_2003_37_3_a8,
     author = {S. M. Malamud},
     title = {An {Analog} of the {Poincar\'e} {Separation} {Theorem} for {Normal} {Matrices} and the {Gauss--Lucas} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--88},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/}
}
TY  - JOUR
AU  - S. M. Malamud
TI  - An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 85
EP  - 88
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/
LA  - ru
ID  - FAA_2003_37_3_a8
ER  - 
%0 Journal Article
%A S. M. Malamud
%T An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 85-88
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/
%G ru
%F FAA_2003_37_3_a8
S. M. Malamud. An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 85-88. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a8/