Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2003_37_3_a4, author = {D. A. Popov}, title = {The {Paley--Wiener} {Theorem} for the {Generalized} {Radon} {Transform} on the {Plane}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {65--72}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a4/} }
D. A. Popov. The Paley--Wiener Theorem for the Generalized Radon Transform on the Plane. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 65-72. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a4/
[1] Popov D. A., “Obobschennoe preobrazovanie Radona na ploskosti, ego obraschenie i usloviya Kavaleri”, Funkts. analiz i ego pril., 35:4 (2001), 38–53 | DOI | MR | Zbl
[2] Gelfand I. M., Gindikin S. G., Graev M. I., Izbrannye zadachi integralnoi geometrii, Dobrosvet, M., 2000 | MR
[3] Khelgason S., Preobrazovanie Radona, Mir, M., 1983 | MR | Zbl
[4] Lax P. D., Phillips R. S., “The Paley–Wiener Theorem for the Radon Transform”, Comm. Pure Appl. Math., 23:3 (1970), 409–424 | DOI | MR | Zbl
[5] Marr R. B., “On the reconstruction of a function on a circular domain from a sampling of its line integrals”, J. Math. Anal. Appl., 45 (1974), 357–374 | DOI | MR | Zbl
[6] Suetin P. K., Ortogonalnye polinomy, Nauka, M., 1979 | MR | Zbl