The Paley--Wiener Theorem for the Generalized Radon Transform on the Plane
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of reconstructing a function on the disk $\mathbb{D}\subset\mathbb{R}^2$ from its integrals over curves close to straight lines, i.e., the inversion problem for the generalized Radon transform. Necessary and sufficient conditions on the range of the generalized Radon transform are obtained for functions supported in a smaller disk $\mathbb{D}'\subset\mathbb{D}$ under the additional condition that the curves that do not meet $\mathbb{D}'$ coincide with the corresponding straight lines.
Keywords: Paley–Winer theorem, Fourier integral operator, Zernike polynomial.
Mots-clés : Radon transform
@article{FAA_2003_37_3_a4,
     author = {D. A. Popov},
     title = {The {Paley--Wiener} {Theorem} for the {Generalized} {Radon} {Transform} on the {Plane}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a4/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - The Paley--Wiener Theorem for the Generalized Radon Transform on the Plane
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 65
EP  - 72
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a4/
LA  - ru
ID  - FAA_2003_37_3_a4
ER  - 
%0 Journal Article
%A D. A. Popov
%T The Paley--Wiener Theorem for the Generalized Radon Transform on the Plane
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 65-72
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a4/
%G ru
%F FAA_2003_37_3_a4
D. A. Popov. The Paley--Wiener Theorem for the Generalized Radon Transform on the Plane. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 65-72. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a4/

[1] Popov D. A., “Obobschennoe preobrazovanie Radona na ploskosti, ego obraschenie i usloviya Kavaleri”, Funkts. analiz i ego pril., 35:4 (2001), 38–53 | DOI | MR | Zbl

[2] Gelfand I. M., Gindikin S. G., Graev M. I., Izbrannye zadachi integralnoi geometrii, Dobrosvet, M., 2000 | MR

[3] Khelgason S., Preobrazovanie Radona, Mir, M., 1983 | MR | Zbl

[4] Lax P. D., Phillips R. S., “The Paley–Wiener Theorem for the Radon Transform”, Comm. Pure Appl. Math., 23:3 (1970), 409–424 | DOI | MR | Zbl

[5] Marr R. B., “On the reconstruction of a function on a circular domain from a sampling of its line integrals”, J. Math. Anal. Appl., 45 (1974), 357–374 | DOI | MR | Zbl

[6] Suetin P. K., Ortogonalnye polinomy, Nauka, M., 1979 | MR | Zbl