Inductive Limits of Area-Preserving Diffeomorphism Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 36-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A compact oriented surface with a given area form is considered. For each coordinate domain, we take the group of diffeomorphisms supported in this domain and preserving the area form. Finally, consider codimension $1$ normal subgroups in these groups. For each pair of coordinate domains one of which contains the closure of the other, there is an obvious inclusion of the corresponding groups. We describe the inductive limits (amalgams) of these two families of groups.
Keywords: inductive limit, central extension, diffeomorphism group.
@article{FAA_2003_37_3_a2,
     author = {R. S. Ismagilov},
     title = {Inductive {Limits} of {Area-Preserving} {Diffeomorphism} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {36--50},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a2/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Inductive Limits of Area-Preserving Diffeomorphism Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 36
EP  - 50
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a2/
LA  - ru
ID  - FAA_2003_37_3_a2
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Inductive Limits of Area-Preserving Diffeomorphism Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 36-50
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a2/
%G ru
%F FAA_2003_37_3_a2
R. S. Ismagilov. Inductive Limits of Area-Preserving Diffeomorphism Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 36-50. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a2/

[1] Serr Zh. P., “Amalgamy, derevya i $SL_2$”, Sb. perevodov “Matematika”, 18:1 (1974), 3–51 | Zbl

[2] Calabi E., “Problems in Analysis”, Symp. in honor of S. Bochner, Princeton University Press, Princeton, NY, 1970, 1–26 | MR | Zbl

[3] Arnold V. I., “Ob odnomernykh kogomologiyakh algebry Li bezdivergentnykh vektornykh polei i o chislakh vrascheniya dinamicheskikh sistem”, Funkts. analiz i ego pril., 3:4 (1969), 77–78 | MR

[4] Banyaga A., “Sur la structure du groupe des diffeomorphismes qui preservent une forme symplectique”, Comment. Math. Helv., 53:2 (1978), 174–227 | DOI | MR | Zbl

[5] McDuff D., “The homology of some groups of diffeomorphisms”, Comment. Math. Helv., 55 (1980), 97–129 | DOI | MR | Zbl

[6] Kirillov A. A., “La géométrie des moments pour les groups de difféomorphismes”, Operator algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progress in Mathematics, 92, Birkhäuser Boston, Boston, MA, 1990, 73–83 | MR

[7] Khesin B., Lyubashenko V., Roger C., “Extensions and contractions of the Lie algebra of $q$-pseudodifferential symbols on the circle”, J. Funct. Anal., 143:1 (1997), 55–97 | DOI | MR | Zbl

[8] Van Est W. T., “Local and global groups”, Indag. Math., 24 (1962), 391–425 | MR

[9] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl

[10] Krygin A. B., “Prodolzhenie diffeomorfizmov, sokhranyayuschikh ob'em”, Funkts. analiz i ego pril., 5:2 (1971), 72–76 | MR | Zbl

[11] Earle C. J., Eells J. jr., “The diffeomorphism group of a compact Riemann surface”, Bull. Amer. Math. Soc., 73 (1967), 557–559 | DOI | MR

[12] Ismagilov R. S., “O gruppe diffeomorfizmov, sokhranyayuschikh ob'em”, Izv. AN SSSR, 44:4 (1980), 831–867 | MR | Zbl

[13] Ismagilov R. S., “Primery yavnogo vychisleniya induktivnogo predela semeistv algebr Li”, Matem. sb., 191:3 (2000), 53–64 | DOI | MR | Zbl