Perestroikas of Convexified Apparent Contours and Global Phase Diagrams in Thermodynamics
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 1-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the classification of singularities occurring in families of convex hulls of apparent contours up to codimension $3$. The results for codimension $2$ singularities allow us to supplement Varchenko's classification of local singularities of thermodynamic phase diagrams of binary mixtures. Singularities of three-parameter families specify so-called global phase diagrams in three-dimensional parameter spaces and define all local perestroikas of phase diagrams in generic one-parameter families of binary mixtures.
Mots-clés : apparent contour
Keywords: convex hull, singularity, thermodynamic phase diagram, binary mixture, global phase diagram.
@article{FAA_2003_37_3_a0,
     author = {F. Aicardi},
     title = {Perestroikas of {Convexified} {Apparent} {Contours} and {Global} {Phase} {Diagrams} in {Thermodynamics}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a0/}
}
TY  - JOUR
AU  - F. Aicardi
TI  - Perestroikas of Convexified Apparent Contours and Global Phase Diagrams in Thermodynamics
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 1
EP  - 19
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a0/
LA  - ru
ID  - FAA_2003_37_3_a0
ER  - 
%0 Journal Article
%A F. Aicardi
%T Perestroikas of Convexified Apparent Contours and Global Phase Diagrams in Thermodynamics
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 1-19
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a0/
%G ru
%F FAA_2003_37_3_a0
F. Aicardi. Perestroikas of Convexified Apparent Contours and Global Phase Diagrams in Thermodynamics. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 1-19. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a0/

[1] Varchenko A. N., “Perestroiki vypuklykh obolochek i fazovye perekhody v termodinamike”, Itogi nauki i tekhniki, Ser. Sovremennye problemy matematiki. Noveishie dostizheniya, 33, 1988, 157–190 | MR

[2] Landau L. D., Lifshits E. M., Statisticheskaya fizika, M., 1964

[3] Aicardi F., “On the classification of singularities in thermodynamics”, Phys. D, 158 (2001), 175–196 | DOI | MR | Zbl

[4] Bogaevskii I. A., “Osobennosti proektirovanii vypuklykh giperpoverkhnostei”, Funkts. analiz i ego pril., 24:2 (1990), 16–23 | MR | Zbl

[5] Arnold V. I., “Osobennosti kaustik i volnovykh frontov”, Biblioteka matematika, Fazis, M., 1996, 158–168 | MR

[6] Platonova O. A., “Proektirovaniya gladkikh poverkhnostei”, Trudy seminara im. Petrovskogo, 10, 1984, 135–149 | MR | Zbl

[7] Arnold V. I., “Osobennosti sistem luchei”, UMN, 38:2 (1983), 77–147 | MR

[8] Encyclopaedia of Mathematical Sciences, Vol. 39, Springer-Verlag, Berlin, 1993, 45

[9] Aicardi F., Valentin P., Ferrand E., “On the classification of generic phenomena in one-parameter families of binary mixtures”, Phys. Chem. Chem. Phys., 2002, 884–895 | DOI

[10] Fisher M. E., Kim Y. C., “Right and wrong near critical endpoints”, J. Chem. Phys., 117:2 (2002), 779–787 | DOI | MR