Spectral Components of Operators with Spectrum on a Curve
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 90-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Trace class perturbations of normal operators with spectrum on a curve and spectral components of such operators are studied. We establish duality relations for the spectral components of an operator and its adjoint. The generalized Sz.-Nagy–Foiaş–Naboko functional model introduced in the paper is a basic tool for this theorem. The results have applications in nonself-adjoint scattering theory and to extreme factorizations of $J$-contraction-valued functions ($J$-inner-outer and $A$-regular-singular factorizations).
Keywords: spectral component, spectrum, operator, functional model.
@article{FAA_2003_37_2_a9,
     author = {A. S. Tikhonov},
     title = {Spectral {Components} of {Operators} with {Spectrum} on a {Curve}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--91},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a9/}
}
TY  - JOUR
AU  - A. S. Tikhonov
TI  - Spectral Components of Operators with Spectrum on a Curve
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 90
EP  - 91
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a9/
LA  - ru
ID  - FAA_2003_37_2_a9
ER  - 
%0 Journal Article
%A A. S. Tikhonov
%T Spectral Components of Operators with Spectrum on a Curve
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 90-91
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a9/
%G ru
%F FAA_2003_37_2_a9
A. S. Tikhonov. Spectral Components of Operators with Spectrum on a Curve. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 90-91. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a9/

[1] Duren P. L., Theory of $H^p$ Spaces, Academic Press, NY, 1970 | MR

[2] Szökefalvi-Nagy B., Foiaş C., Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam–London, 1970 | MR

[3] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR, ser. matem., 39:1 (1975), 123–148 | MR | Zbl

[4] Sakhnovich L. A., Trudy MMO, 19, 1968, 211–273

[5] Naboko S. N., DAN SSSR, 232:1 (1977), 36–39 | MR | Zbl

[6] Makarov N. G., Vasjunin V. I., “A model for noncontractions and stability of the continuous spectrum”, Complex analysis and spectral theory (Leningrad, 1979/1980), Lect. Notes in Math., 864, Springer, Berlin, 1981, 365–412 | DOI | MR

[7] Makarov N. G., Proc. Alfred Haar memorial conference, Budapest, 1985, 611–621 | MR

[8] Tikhonov A. S., Absolyutno nepreryvnyi spektr lineinogo operatora, Dep. UkrNIINTI No2471-Uk88, 1988

[9] Naboko S. N., Trudy MIAN, 147, 1980, 86–114 | MR | Zbl

[10] Tikhonov A. S., Algebra i analiz, 7:1 (1995), 200–220 | MR | Zbl

[11] Tikhonov A. S., “Inner-outer factorization of $J$-contractive-valued functions”, Operator theory and related topics, Vol. II (Odessa, 1997), Oper. Theory Adv. Appl., 118, 2000, 405–415 | MR | Zbl

[12] Arov D. Z., Lect. Notes in Math., 1043, 1984, 164–168

[13] Horn R., Johnson C., Matrix Analysis, Cambridge University Press, 1986 | MR

[14] Nikolski N. K., Vasyunin V. I., “Elements of spectral theory in terms of the free function model. I: Basic constructions”, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 211–302 | MR | Zbl