Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2003_37_2_a9, author = {A. S. Tikhonov}, title = {Spectral {Components} of {Operators} with {Spectrum} on a {Curve}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {90--91}, publisher = {mathdoc}, volume = {37}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a9/} }
A. S. Tikhonov. Spectral Components of Operators with Spectrum on a Curve. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 90-91. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a9/
[1] Duren P. L., Theory of $H^p$ Spaces, Academic Press, NY, 1970 | MR
[2] Szökefalvi-Nagy B., Foiaş C., Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam–London, 1970 | MR
[3] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR, ser. matem., 39:1 (1975), 123–148 | MR | Zbl
[4] Sakhnovich L. A., Trudy MMO, 19, 1968, 211–273
[5] Naboko S. N., DAN SSSR, 232:1 (1977), 36–39 | MR | Zbl
[6] Makarov N. G., Vasjunin V. I., “A model for noncontractions and stability of the continuous spectrum”, Complex analysis and spectral theory (Leningrad, 1979/1980), Lect. Notes in Math., 864, Springer, Berlin, 1981, 365–412 | DOI | MR
[7] Makarov N. G., Proc. Alfred Haar memorial conference, Budapest, 1985, 611–621 | MR
[8] Tikhonov A. S., Absolyutno nepreryvnyi spektr lineinogo operatora, Dep. UkrNIINTI No2471-Uk88, 1988
[9] Naboko S. N., Trudy MIAN, 147, 1980, 86–114 | MR | Zbl
[10] Tikhonov A. S., Algebra i analiz, 7:1 (1995), 200–220 | MR | Zbl
[11] Tikhonov A. S., “Inner-outer factorization of $J$-contractive-valued functions”, Operator theory and related topics, Vol. II (Odessa, 1997), Oper. Theory Adv. Appl., 118, 2000, 405–415 | MR | Zbl
[12] Arov D. Z., Lect. Notes in Math., 1043, 1984, 164–168
[13] Horn R., Johnson C., Matrix Analysis, Cambridge University Press, 1986 | MR
[14] Nikolski N. K., Vasyunin V. I., “Elements of spectral theory in terms of the free function model. I: Basic constructions”, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 211–302 | MR | Zbl