Spectral Components of Operators with Spectrum on a Curve
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 90-91
Voir la notice de l'article provenant de la source Math-Net.Ru
Trace class perturbations of normal operators with spectrum on a curve and spectral components of such operators are studied. We establish duality relations for the spectral components of an operator and its adjoint. The generalized Sz.-Nagy–Foiaş–Naboko functional model introduced in the paper is a basic tool for this theorem. The results have applications in nonself-adjoint scattering theory and to extreme factorizations of $J$-contraction-valued functions ($J$-inner-outer and $A$-regular-singular factorizations).
Keywords:
spectral component, spectrum, operator, functional model.
@article{FAA_2003_37_2_a9,
author = {A. S. Tikhonov},
title = {Spectral {Components} of {Operators} with {Spectrum} on a {Curve}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {90--91},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a9/}
}
A. S. Tikhonov. Spectral Components of Operators with Spectrum on a Curve. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 90-91. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a9/