Resolution of Corank $1$ Singularities of a Generic Front
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 52-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a resolution of singularities for wave fronts having only stable singularities of corank $1$. It is based on a transformation that takes a given front to a new front with singularities of the same type in a space of smaller dimension. This transformation is defined by the class $A_{\mu}$ of Legendre singularities. The front and the ambient space obtained by the $A_{\mu}$-transformation inherit topological information on the closure of the manifold of singularities $A_{\mu}$ of the original front. The resolution of every (reducible) singularity of a front is determined by a suitable iteration of $A_{\mu}$-transformations. As a corollary, we obtain new conditions for the coexistence of singularities of generic fronts.
Keywords: Legendre mapping, wave front, stable corank $1$ singularity, resolution of singularities, Euler number.
@article{FAA_2003_37_2_a5,
     author = {V. D. Sedykh},
     title = {Resolution of {Corank} $1$ {Singularities} of a {Generic} {Front}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--64},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a5/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - Resolution of Corank $1$ Singularities of a Generic Front
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 52
EP  - 64
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a5/
LA  - ru
ID  - FAA_2003_37_2_a5
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T Resolution of Corank $1$ Singularities of a Generic Front
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 52-64
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a5/
%G ru
%F FAA_2003_37_2_a5
V. D. Sedykh. Resolution of Corank $1$ Singularities of a Generic Front. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 52-64. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a5/

[1] Arnold V. I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, t. 1, Nauka, M., 1982 | MR

[3] Vasilev V. A., Lagranzhevy i lezhandrovy kharakteristicheskie klassy, MTsNMO, M., 2000

[4] Zakalyukin V. M., Osobennosti lagranzhevykh i lezhandrovykh otobrazhenii, Diss. k. f.-m. n., MGU, M., 1977

[5] Kazaryan M. E., “Kharakteristicheskie klassy lagranzhevykh i lezhandrovykh osobennostei”, UMN, 50:4 (1995), 45–70 | MR | Zbl

[6] Mazer Dzh., “Stratifikatsii i otobrazheniya”, UMN, 27:5 (1972), 85–118 | MR

[7] Sedykh V. D., “Strogaya vypuklost vypuklogo mnogoobraziya obschego polozheniya”, Trudy MIRAN, 209, 1995, 200–219 | MR | Zbl

[8] Sedykh V. D., “Sootnosheniya mezhdu eilerovymi kharakteristikami mnogoobrazii osobennostei koranga $1$ fronta obschego polozheniya”, Dokl. RAN, 383:6 (2002), 735–739 | MR | Zbl

[9] Colley S. J., “Enumerating stationary multiple-points”, Adv. in Math., 66:2 (1987), 149–170 | DOI | MR | Zbl

[10] Goryunov V., “Semi-simplicial resolutions and homology of images and discriminants of mappings”, Proc. London Math. Soc., 70:3 (1995), 363–385 | DOI | MR | Zbl

[11] Izumiya S., Marar W. L., “The Euler characteristic of a generic wave front in a $3$-manifold”, Proc. Amer. Math. Soc., 118:4 (1993), 1347–1350 | DOI | MR | Zbl

[12] Kleiman S. L., “Multiple-point formulas I: Iteration”, Acta Math., 147:1–2 (1981), 13–49 | DOI | MR | Zbl

[13] Kleiman S. L., Lipman J., Ulrich B., “The multiple-point schemes of a finite curvilinear map of codimension one”, Ark. Mat., 34:2 (1996), 285–326 | DOI | MR | Zbl

[14] Marar W. L., Mond D., “Multiple-point schemes for corank $1$ maps”, J. London Math. Soc. (2), 39:3 (1989), 553–567 | DOI | MR | Zbl