On the Commutativity of Weakly Commutative Riemannian Homogeneous Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 41-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Riemannian homogeneous space $X=G/H$ is said to be commutative if the algebra of $G$-invariant differential operators on $X$ is commutative and weakly commutative if the associated Poisson algebra is commutative. Clearly, the commutativity of $X$ implies its weak commutativity. The converse implication is proved in this paper.
Mots-clés : Lie group, Poisson bracket
Keywords: Lie algebra, universal enveloping algebra, homogeneous space, (weakly) commutative space, symplectic manifold, momentum map.
@article{FAA_2003_37_2_a4,
     author = {L. G. Rybnikov},
     title = {On the {Commutativity} of {Weakly} {Commutative} {Riemannian} {Homogeneous} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a4/}
}
TY  - JOUR
AU  - L. G. Rybnikov
TI  - On the Commutativity of Weakly Commutative Riemannian Homogeneous Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 41
EP  - 51
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a4/
LA  - ru
ID  - FAA_2003_37_2_a4
ER  - 
%0 Journal Article
%A L. G. Rybnikov
%T On the Commutativity of Weakly Commutative Riemannian Homogeneous Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 41-51
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a4/
%G ru
%F FAA_2003_37_2_a4
L. G. Rybnikov. On the Commutativity of Weakly Commutative Riemannian Homogeneous Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 41-51. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a4/

[1] Vinberg E. B., “Kommutativnye odnorodnye prostranstva i koizotropnye simplekticheskie deistviya”, UMN, 56:1 (2001), 3–62 | DOI | MR | Zbl

[2] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[3] Mikityuk I. V., “Ob integriruemosti invariantnykh gamiltonovykh sistem s odnorodnymi konfiguratsionnymi prostranstvami”, Matem. sb., 129 (1986), 514–534 | MR

[4] Duflo M., “Open problems in representation theory of Lie groups”, Conference on Analysis on homogeneous spaces (August 25–30, Kataka, Japan), eds. T. Oshima, 1986, 1–5

[5] Guillemin V., Sternberg S., “Multiplicity-free spaces”, J. Diff. Geom., 19 (1984), 31–56 | MR | Zbl

[6] Knop F., “Harish–Chandra homomorphism for reductive group actions”, Ann. of Math. (2), 140:2 (1994), 253–288 | DOI | MR | Zbl