On the Commutativity of Weakly Commutative Riemannian Homogeneous Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 41-51
Voir la notice de l'article provenant de la source Math-Net.Ru
A Riemannian homogeneous space $X=G/H$ is said to be commutative if the algebra of $G$-invariant differential operators on $X$ is commutative and weakly commutative if the associated Poisson algebra is commutative. Clearly, the commutativity of $X$ implies its weak commutativity. The converse implication is proved in this paper.
Mots-clés :
Lie group, Poisson bracket
Keywords: Lie algebra, universal enveloping algebra, homogeneous space, (weakly) commutative space, symplectic manifold, momentum map.
Keywords: Lie algebra, universal enveloping algebra, homogeneous space, (weakly) commutative space, symplectic manifold, momentum map.
@article{FAA_2003_37_2_a4,
author = {L. G. Rybnikov},
title = {On the {Commutativity} of {Weakly} {Commutative} {Riemannian} {Homogeneous} {Spaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {41--51},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a4/}
}
L. G. Rybnikov. On the Commutativity of Weakly Commutative Riemannian Homogeneous Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 41-51. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a4/