Keywords: Lie algebra, universal enveloping algebra, homogeneous space, (weakly) commutative space, symplectic manifold, momentum map.
@article{FAA_2003_37_2_a4,
author = {L. G. Rybnikov},
title = {On the {Commutativity} of {Weakly} {Commutative} {Riemannian} {Homogeneous} {Spaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {41--51},
year = {2003},
volume = {37},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a4/}
}
L. G. Rybnikov. On the Commutativity of Weakly Commutative Riemannian Homogeneous Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 41-51. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a4/
[1] Vinberg E. B., “Kommutativnye odnorodnye prostranstva i koizotropnye simplekticheskie deistviya”, UMN, 56:1 (2001), 3–62 | DOI | MR | Zbl
[2] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR
[3] Mikityuk I. V., “Ob integriruemosti invariantnykh gamiltonovykh sistem s odnorodnymi konfiguratsionnymi prostranstvami”, Matem. sb., 129 (1986), 514–534 | MR
[4] Duflo M., “Open problems in representation theory of Lie groups”, Conference on Analysis on homogeneous spaces (August 25–30, Kataka, Japan), eds. T. Oshima, 1986, 1–5
[5] Guillemin V., Sternberg S., “Multiplicity-free spaces”, J. Diff. Geom., 19 (1984), 31–56 | MR | Zbl
[6] Knop F., “Harish–Chandra homomorphism for reductive group actions”, Ann. of Math. (2), 140:2 (1994), 253–288 | DOI | MR | Zbl