Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2003_37_2_a3, author = {O. I. Mokhov}, title = {The {Liouville} {Canonical} {Form} for {Compatible} {Nonlocal} {Poisson} {Brackets} of {Hydrodynamic} {Type} and {Integrable} {Hierarchies}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {28--40}, publisher = {mathdoc}, volume = {37}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a3/} }
TY - JOUR AU - O. I. Mokhov TI - The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 28 EP - 40 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a3/ LA - ru ID - FAA_2003_37_2_a3 ER -
%0 Journal Article %A O. I. Mokhov %T The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies %J Funkcionalʹnyj analiz i ego priloženiâ %D 2003 %P 28-40 %V 37 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a3/ %G ru %F FAA_2003_37_2_a3
O. I. Mokhov. The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 28-40. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a3/
[1] Mokhov O. I., Ferapontov E. V., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl
[2] Mokhov O. I., “Soglasovannye metriki postoyannoi rimanovoi krivizny: lokalnaya geometriya, nelineinye uravneniya i integriruemost”, Funkts. analiz i ego pril., 36:3 (2002), 36–47 | DOI | MR | Zbl
[3] Mokhov O. I., “Para Laksa dlya neosobykh puchkov metrik postoyannoi rimanovoi krivizny”, UMN, 57:3 (2002), 155–156 | DOI | MR | Zbl
[4] Mokhov O. I., “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 ; , 2000 arXiv: /math.DG/0005051 | DOI | MR | Zbl
[5] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[6] Mokhov O. I., “Ob integriruemosti uravnenii dlya neosobykh par soglasovannykh ploskikh metrik”, Teor. matem. fiz., 130:2 (2002), 233–250 ; , 2000 arXiv: /math.DG/0005081 | DOI | MR | Zbl
[7] Mokhov O. I., “Ploskie puchki metrik i integriruemye reduktsii uravnenii Lame”, UMN, 56:2 (2001), 221–222 | DOI | MR | Zbl
[8] Ferapontov E. V., “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A, 34 (2001), 2377–2388 ; , 2000 arXiv: /math.DG/0005221 | DOI | MR | Zbl | MR
[9] Mokhov O. I., “Soglasovannye gamiltonovy operatory Dubrovina–Novikova, proizvodnaya Li i integriruemye sistemy gidrodinamicheskogo tipa”, Nelineinye evolyutsionnye uravneniya i dinamicheskie sistemy, Trudy Mezhdunarodnoi konferentsii (Kembridzh, Angliya, 24–30 iyulya 2001 g.) ; ТМФ, 133:2 (2002), 279–288 ; , 2002 arXiv: /math.DG/0201281 | MR | Zbl | DOI | MR
[10] Mokhov O. I., “Integriruemye bigamiltonovy sistemy gidrodinamicheskogo tipa”, UMN, 57:1 (2002), 157–158 | DOI | MR
[11] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[12] Mokhov O. I., “Hamiltonian systems of hydrodynamic type and constant curvature metrics”, Phys. Letters A, 166:3–4 (1992), 215–216 | DOI | MR
[13] Mokhov O. I., “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl
[14] Mokhov O. I., “O soglasovannykh puassonovykh strukturakh gidrodinamicheskogo tipa”, UMN, 52:6 (1997), 171–172 | DOI | MR
[15] Mokhov O. I., “Soglasovannye puassonovy struktury gidrodinamicheskogo tipa i uravneniya assotsiativnosti”, Trudy MIRAN, 225, 1999, 284–300 | MR | Zbl
[16] Dubrovin B., “Geometry of 2D topological field theories”, Lect. Notes in Math., 1620, 1996, 120–348 ; , 1994 arXiv: /hep-th/9407018 | DOI | MR | Zbl | MR
[17] Maltsev A. Ya., Novikov S. P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D, 156:1–2, 53–80 (2001) ; , 2000 arXiv: /nlin.SI/0006030 | MR | Zbl
[18] Pavlov M. V., “Ellipticheskie koordinaty i multigamiltonovy struktury sistem gidrodinamicheskogo tipa”, DAN, 339:1 (1994), 21–23 | Zbl
[19] Ferapontov E. V., “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl
[20] Ferapontov E. V., “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in topology and mathematical physics, eds. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl
[21] Mokhov O. I., “Compatible Poisson structures of hydrodynamic type and the equations of associativity in two-dimensional topological field theory”, Rep. Math. Phys., 43:1/2 (1999), 247–256 | DOI | MR | Zbl
[22] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz i ego pril., 13:4 (1979), 13–30 | MR
[23] Fuchssteiner B., “Application of hereditary symmetries to nonlinear evolution equations”, Nonlinear Anal., 3 (1979), 849–862 | DOI | MR | Zbl
[24] Fokas A. S., Fuchssteiner B., “On the structure of symplectic operators and hereditary symmetries”, Lettere al Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR
[25] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[26] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, John Wiley Sons, Chichester, England, 1993 | MR