The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 28-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We reduce an arbitrary pair of compatible nonlocal Poisson brackets of hydrodynamic type generated by metrics of constant Riemannian curvature (compatible Mokhov–Ferapontov brackets) to a canonical form, find an integrable system describing all such pairs, and, for an arbitrary solution of this integrable system, i.e., for any pair of compatible Poisson brackets in question, construct (in closed form) integrable bi-Hamiltonian systems of hydrodynamic type possessing this pair of compatible Poisson brackets of hydrodynamic type. The corresponding special canonical forms of metrics of constant Riemannian curvature are considered. A theory of special Liouville coordinates for Poisson brackets is developed. We prove that the classification of these compatible Poisson brackets is equivalent to the classification of special Liouville coordinates for Mokhov–Ferapontov brackets.
Keywords: metric of constant curvature, integrable hierarchy, system of hydrodynamic type, bi-Hamiltonian system, compatible metrics, flat pencil of metrics
Mots-clés : compatible Poisson brackets, Poisson bracket of hydrodynamic type, Liouville bracket, Liouville coordinates.
@article{FAA_2003_37_2_a3,
     author = {O. I. Mokhov},
     title = {The {Liouville} {Canonical} {Form} for {Compatible} {Nonlocal} {Poisson} {Brackets} of {Hydrodynamic} {Type} and {Integrable} {Hierarchies}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {28--40},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a3/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 28
EP  - 40
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a3/
LA  - ru
ID  - FAA_2003_37_2_a3
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 28-40
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a3/
%G ru
%F FAA_2003_37_2_a3
O. I. Mokhov. The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 28-40. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a3/

[1] Mokhov O. I., Ferapontov E. V., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl

[2] Mokhov O. I., “Soglasovannye metriki postoyannoi rimanovoi krivizny: lokalnaya geometriya, nelineinye uravneniya i integriruemost”, Funkts. analiz i ego pril., 36:3 (2002), 36–47 | DOI | MR | Zbl

[3] Mokhov O. I., “Para Laksa dlya neosobykh puchkov metrik postoyannoi rimanovoi krivizny”, UMN, 57:3 (2002), 155–156 | DOI | MR | Zbl

[4] Mokhov O. I., “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 ; , 2000 arXiv: /math.DG/0005051 | DOI | MR | Zbl

[5] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[6] Mokhov O. I., “Ob integriruemosti uravnenii dlya neosobykh par soglasovannykh ploskikh metrik”, Teor. matem. fiz., 130:2 (2002), 233–250 ; , 2000 arXiv: /math.DG/0005081 | DOI | MR | Zbl

[7] Mokhov O. I., “Ploskie puchki metrik i integriruemye reduktsii uravnenii Lame”, UMN, 56:2 (2001), 221–222 | DOI | MR | Zbl

[8] Ferapontov E. V., “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A, 34 (2001), 2377–2388 ; , 2000 arXiv: /math.DG/0005221 | DOI | MR | Zbl | MR

[9] Mokhov O. I., “Soglasovannye gamiltonovy operatory Dubrovina–Novikova, proizvodnaya Li i integriruemye sistemy gidrodinamicheskogo tipa”, Nelineinye evolyutsionnye uravneniya i dinamicheskie sistemy, Trudy Mezhdunarodnoi konferentsii (Kembridzh, Angliya, 24–30 iyulya 2001 g.) ; ТМФ, 133:2 (2002), 279–288 ; , 2002 arXiv: /math.DG/0201281 | MR | Zbl | DOI | MR

[10] Mokhov O. I., “Integriruemye bigamiltonovy sistemy gidrodinamicheskogo tipa”, UMN, 57:1 (2002), 157–158 | DOI | MR

[11] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[12] Mokhov O. I., “Hamiltonian systems of hydrodynamic type and constant curvature metrics”, Phys. Letters A, 166:3–4 (1992), 215–216 | DOI | MR

[13] Mokhov O. I., “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl

[14] Mokhov O. I., “O soglasovannykh puassonovykh strukturakh gidrodinamicheskogo tipa”, UMN, 52:6 (1997), 171–172 | DOI | MR

[15] Mokhov O. I., “Soglasovannye puassonovy struktury gidrodinamicheskogo tipa i uravneniya assotsiativnosti”, Trudy MIRAN, 225, 1999, 284–300 | MR | Zbl

[16] Dubrovin B., “Geometry of 2D topological field theories”, Lect. Notes in Math., 1620, 1996, 120–348 ; , 1994 arXiv: /hep-th/9407018 | DOI | MR | Zbl | MR

[17] Maltsev A. Ya., Novikov S. P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D, 156:1–2, 53–80 (2001) ; , 2000 arXiv: /nlin.SI/0006030 | MR | Zbl

[18] Pavlov M. V., “Ellipticheskie koordinaty i multigamiltonovy struktury sistem gidrodinamicheskogo tipa”, DAN, 339:1 (1994), 21–23 | Zbl

[19] Ferapontov E. V., “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl

[20] Ferapontov E. V., “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in topology and mathematical physics, eds. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl

[21] Mokhov O. I., “Compatible Poisson structures of hydrodynamic type and the equations of associativity in two-dimensional topological field theory”, Rep. Math. Phys., 43:1/2 (1999), 247–256 | DOI | MR | Zbl

[22] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz i ego pril., 13:4 (1979), 13–30 | MR

[23] Fuchssteiner B., “Application of hereditary symmetries to nonlinear evolution equations”, Nonlinear Anal., 3 (1979), 849–862 | DOI | MR | Zbl

[24] Fokas A. S., Fuchssteiner B., “On the structure of symplectic operators and hereditary symmetries”, Lettere al Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR

[25] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[26] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, John Wiley Sons, Chichester, England, 1993 | MR