On Nontrivial Solutions of a Nonlinear Schr\"odinger Equation with Magnetic Field
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear magnetic Schrödinger equations under assumptions that imply the Palais–Smale condition for the corresponding functional and prove some results on the existence and multiplicity of solutions vanishing at infinity.
Keywords: nonlinear Schrödinger equation, multiplicity.
Mots-clés : Palais–Smale condition
@article{FAA_2003_37_1_a9,
     author = {A. A. Pankov},
     title = {On {Nontrivial} {Solutions} of a {Nonlinear} {Schr\"odinger} {Equation} with {Magnetic} {Field}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--91},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a9/}
}
TY  - JOUR
AU  - A. A. Pankov
TI  - On Nontrivial Solutions of a Nonlinear Schr\"odinger Equation with Magnetic Field
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 88
EP  - 91
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a9/
LA  - ru
ID  - FAA_2003_37_1_a9
ER  - 
%0 Journal Article
%A A. A. Pankov
%T On Nontrivial Solutions of a Nonlinear Schr\"odinger Equation with Magnetic Field
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 88-91
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a9/
%G ru
%F FAA_2003_37_1_a9
A. A. Pankov. On Nontrivial Solutions of a Nonlinear Schr\"odinger Equation with Magnetic Field. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a9/

[1] Leinfelder H., Simader C., “Schrodinger operators with singular magnetic vector potentials”, Math. Z., 176 (1981), 1–19 | DOI | MR | Zbl

[2] Avron J., Herbst I., Simon B., “Schrodinger operators with magnetic fields. I: General interactions”, Duke Math. J., 45 (1978), 847–883 | DOI | MR | Zbl

[3] Kondratiev V., Shubin M., “Discreteness of spectrum for the magnetic Schrodinger operators”, Comm. Partial Differential Equations, 27 (2002), 477–525 | DOI | MR | Zbl

[4] Kondratiev V., Maz'ya V., Shubin M., , 2002 arXiv: /math.SP/0206140 | MR

[5] Rabinowitz P., Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, RI, 1986 | MR

[6] Willem M., Minimax theorems, Birkhäuser, Boston, 1996 | MR

[7] Bartsch T., “Infinitely many solutions of a symmetric Dirichlet problem”, Nonlin. Analysis, 20 (1993), 1205–1216 | DOI | MR | Zbl

[8] Bartsch T., Pankov A., Wang Z.-Q., “Nonlinear Schrodinger equations with steep potential well”, Comm. Contemp. Math., 3 (2001), 549–569 | DOI | MR | Zbl

[9] Esteban E. M., Lions P. L., “Stationary solutions of nonlinear Schrödinger equations with an external magnetic field”, Partial differential equations and calculus of variations, V. I, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1989, 401–449 | MR

[10] Kurata K., “Existence and semi-classical limit of the least energy solution to a nonlinear Schrodinger equation with electromagnetic fields”, Nonlin. Analysis, 41 (2000), 763–778 | DOI | MR | Zbl

[11] Cingolani S., Secchi S., , 2001 arXiv: /math.AP/0107047

[12] Schindler I., Tintarev K., “A nonlinear Schrodinger equation with external magnetic field”, Rostock. Math. Kolloq., 56 (2002), 49–54 | MR | Zbl

[13] Rabinowitz P., “On a class of nonlinear Schrodinger equations”, Z. Angew. Math. Phys., 43 (1992), 270–291 | DOI | MR | Zbl

[14] Bartsch T., Wang Z.-Q., “Existence and multiplicity results for some superlinear elliptic problems on $R_N$”, Comm. Partial Differential Equations, 20 (1995), 1725–1741 | DOI | MR | Zbl