Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2003_37_1_a9, author = {A. A. Pankov}, title = {On {Nontrivial} {Solutions} of a {Nonlinear} {Schr\"odinger} {Equation} with {Magnetic} {Field}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {88--91}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a9/} }
TY - JOUR AU - A. A. Pankov TI - On Nontrivial Solutions of a Nonlinear Schr\"odinger Equation with Magnetic Field JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 88 EP - 91 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a9/ LA - ru ID - FAA_2003_37_1_a9 ER -
A. A. Pankov. On Nontrivial Solutions of a Nonlinear Schr\"odinger Equation with Magnetic Field. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a9/
[1] Leinfelder H., Simader C., “Schrodinger operators with singular magnetic vector potentials”, Math. Z., 176 (1981), 1–19 | DOI | MR | Zbl
[2] Avron J., Herbst I., Simon B., “Schrodinger operators with magnetic fields. I: General interactions”, Duke Math. J., 45 (1978), 847–883 | DOI | MR | Zbl
[3] Kondratiev V., Shubin M., “Discreteness of spectrum for the magnetic Schrodinger operators”, Comm. Partial Differential Equations, 27 (2002), 477–525 | DOI | MR | Zbl
[4] Kondratiev V., Maz'ya V., Shubin M., , 2002 arXiv: /math.SP/0206140 | MR
[5] Rabinowitz P., Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, RI, 1986 | MR
[6] Willem M., Minimax theorems, Birkhäuser, Boston, 1996 | MR
[7] Bartsch T., “Infinitely many solutions of a symmetric Dirichlet problem”, Nonlin. Analysis, 20 (1993), 1205–1216 | DOI | MR | Zbl
[8] Bartsch T., Pankov A., Wang Z.-Q., “Nonlinear Schrodinger equations with steep potential well”, Comm. Contemp. Math., 3 (2001), 549–569 | DOI | MR | Zbl
[9] Esteban E. M., Lions P. L., “Stationary solutions of nonlinear Schrödinger equations with an external magnetic field”, Partial differential equations and calculus of variations, V. I, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1989, 401–449 | MR
[10] Kurata K., “Existence and semi-classical limit of the least energy solution to a nonlinear Schrodinger equation with electromagnetic fields”, Nonlin. Analysis, 41 (2000), 763–778 | DOI | MR | Zbl
[11] Cingolani S., Secchi S., , 2001 arXiv: /math.AP/0107047
[12] Schindler I., Tintarev K., “A nonlinear Schrodinger equation with external magnetic field”, Rostock. Math. Kolloq., 56 (2002), 49–54 | MR | Zbl
[13] Rabinowitz P., “On a class of nonlinear Schrodinger equations”, Z. Angew. Math. Phys., 43 (1992), 270–291 | DOI | MR | Zbl
[14] Bartsch T., Wang Z.-Q., “Existence and multiplicity results for some superlinear elliptic problems on $R_N$”, Comm. Partial Differential Equations, 20 (1995), 1725–1741 | DOI | MR | Zbl