Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 81-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model operator similar to the energy operator of a system with a nonconserved number of particles is studied. The essential spectrum of the operator is described, and under some natural conditions on the parameters it is shown that there are infinitely many eigenvalues lying below the bottom of the essential spectrum.
Keywords: model operator, energy operator, systems with nonconserved number of particles, eigenvalues, Efimov effect, essential spectrum, infinitely many eigenvalues.
@article{FAA_2003_37_1_a7,
     author = {S. N. Lakaev and T. H. Rasulov},
     title = {Efimov's {Effect} in a {Model} of {Perturbation} {Theory} of the {Essential} {Spectrum}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--84},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - T. H. Rasulov
TI  - Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 81
EP  - 84
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/
LA  - ru
ID  - FAA_2003_37_1_a7
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A T. H. Rasulov
%T Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 81-84
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/
%G ru
%F FAA_2003_37_1_a7
S. N. Lakaev; T. H. Rasulov. Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/

[1] Efimov V. N., Yadepnaya fizika, 12:5 (1970), 1080–1091

[2] Yafaev D. R., “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | Zbl

[3] Sobolev A. V., “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156 (1993), 101–126 | DOI | MR | Zbl

[4] Mattis D. C., “The few-body problem on a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[5] Mogilner A. I., Applications of Self-Adjoint Extensions in Quantum Physics, 1989, 161–173

[6] Lakaev S. N., “O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanii sistemy trekh kvantovykh reshetchatykh chastits”, TMF, 89:1 (1991), 94–104 | MR

[7] Lakaev S. N., “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego ppil., 27:3 (1993), 15–28 | MR | Zbl

[8] Mogilner A. I., “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: spectra and scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, 1991, 139–194 | MR

[9] Minlos R., Spohn H., “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in statistical and theoretical physics, Amer. Math. Soc. Transl. (2), 177, Amer. Math. Soc., Providence, RI, 1996, 159–193 | MR | Zbl