Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 81-84
Voir la notice de l'article provenant de la source Math-Net.Ru
A model operator similar to the energy operator of a system with a nonconserved number of particles is studied. The essential spectrum of the operator is described, and under some natural conditions on the parameters it is shown that there are infinitely many eigenvalues lying below the bottom of the essential spectrum.
Keywords:
model operator, energy operator, systems with nonconserved number of particles, eigenvalues, Efimov effect, essential spectrum, infinitely many eigenvalues.
@article{FAA_2003_37_1_a7,
author = {S. N. Lakaev and T. H. Rasulov},
title = {Efimov's {Effect} in a {Model} of {Perturbation} {Theory} of the {Essential} {Spectrum}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {81--84},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/}
}
TY - JOUR AU - S. N. Lakaev AU - T. H. Rasulov TI - Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 81 EP - 84 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/ LA - ru ID - FAA_2003_37_1_a7 ER -
S. N. Lakaev; T. H. Rasulov. Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/