Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2003_37_1_a7, author = {S. N. Lakaev and T. H. Rasulov}, title = {Efimov's {Effect} in a {Model} of {Perturbation} {Theory} of the {Essential} {Spectrum}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {81--84}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/} }
TY - JOUR AU - S. N. Lakaev AU - T. H. Rasulov TI - Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 81 EP - 84 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/ LA - ru ID - FAA_2003_37_1_a7 ER -
S. N. Lakaev; T. H. Rasulov. Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a7/
[1] Efimov V. N., Yadepnaya fizika, 12:5 (1970), 1080–1091
[2] Yafaev D. R., “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | Zbl
[3] Sobolev A. V., “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156 (1993), 101–126 | DOI | MR | Zbl
[4] Mattis D. C., “The few-body problem on a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR
[5] Mogilner A. I., Applications of Self-Adjoint Extensions in Quantum Physics, 1989, 161–173
[6] Lakaev S. N., “O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanii sistemy trekh kvantovykh reshetchatykh chastits”, TMF, 89:1 (1991), 94–104 | MR
[7] Lakaev S. N., “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego ppil., 27:3 (1993), 15–28 | MR | Zbl
[8] Mogilner A. I., “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: spectra and scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, 1991, 139–194 | MR
[9] Minlos R., Spohn H., “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in statistical and theoretical physics, Amer. Math. Soc. Transl. (2), 177, Amer. Math. Soc., Providence, RI, 1996, 159–193 | MR | Zbl