Tri-Hamiltonian Structures of Egorov Systems of Hydrodynamic Type
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 38-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a simple condition under which the metric corresponding to a diagonalizable semi-Hamiltonian hydrodynamic type system belongs to the class of Egorov (potential) metrics. For Egorov diagonal hydrodynamic type systems satisfying natural semisimplicity and homogeneity conditions, we prove necessary and sufficient conditions under which the third structure is local or corresponds to a metric of constant curvature. The results are illustrated by some well-known physical examples of such systems.
Keywords: Egorov metric, Hamiltonian structure, hydrodynamic type systems, Whitham equations, Benney chain.
Mots-clés : Riemann invariant
@article{FAA_2003_37_1_a3,
     author = {M. V. Pavlov and S. P. Tsarev},
     title = {Tri-Hamiltonian {Structures} of {Egorov} {Systems} of {Hydrodynamic} {Type}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--54},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a3/}
}
TY  - JOUR
AU  - M. V. Pavlov
AU  - S. P. Tsarev
TI  - Tri-Hamiltonian Structures of Egorov Systems of Hydrodynamic Type
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 38
EP  - 54
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a3/
LA  - ru
ID  - FAA_2003_37_1_a3
ER  - 
%0 Journal Article
%A M. V. Pavlov
%A S. P. Tsarev
%T Tri-Hamiltonian Structures of Egorov Systems of Hydrodynamic Type
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 38-54
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a3/
%G ru
%F FAA_2003_37_1_a3
M. V. Pavlov; S. P. Tsarev. Tri-Hamiltonian Structures of Egorov Systems of Hydrodynamic Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 38-54. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a3/

[1] Alekseev V. L., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s uravneniyami Uizema”, UMN,, 50:6 (1995), 165–166 | MR | Zbl

[2] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1993), 781–785 | MR

[3] Egorov D. F., Raboty po differentsialnoi geometrii, Nauka, M., 1970 | MR

[4] Zakharov V. E., “Uravneniya Benni i kvaziklassicheskoe priblizhenie v metode obratnoi zadachi”, Funkts. analiz i ego pril., 14:2 (1980), 15–24 | MR | Zbl

[5] Mokhov O. I., Ferapontov E. V., “Nelokalnye gamiltonovy operatory gidrodinamicheskogo tipa, assotsiirovannye s metrikami postoyannoi krivizny”, UMN, 45:3 (1993), 191–192 | MR

[6] Pavlov M. V., “Nelineinoe uravnenie Shrëdingera i metod usredneniya Bogolyubova–Uizema”, Teor. matem. fiz., 71:3 (1987), 351–356 | MR | Zbl

[7] Pavlov M. V., “Ellipticheskie koordinaty i multigamiltonovy struktury sistem gidrodinamicheskogo tipa”, Dokl. RAN, 339:1 (1994), 21–23 | MR | Zbl

[8] Pavlov M. V., “Multigamiltonovy struktury uravnenii Uizema”, Dokl. RAN, 338:2 (1994), 165–167 | MR | Zbl

[9] Pavlov M. V., “O lokalnykh gamiltonovykh strukturakh sistemy Benni”, Dokl. RAN, 338:1 (1994), 33–34 | MR | Zbl

[10] Pavlov M. V., Tsarev S. P., “O zakonakh sokhraneniya uravnenii Benni”, UMN, 46:4 (1991), 169–170 | MR

[11] Ferapontov E. V., “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl

[12] Tsarev S. P., “O skobkakh Puassona i odnomernykh gamiltonovykh sistemakh gidrodinamicheskogo tipa”, Dokl. AN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[13] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl

[14] Tsarev S. P., Differentsialno-geometricheskie metody integrirovaniya sistem gidrodinamicheskogo tipa, Diss. d. f.-m. n., M., 1993 | Zbl

[15] Alekseev V. L., Pavlov M. V., “Hamiltonian structures of the Whitham equations”, Proceedings of the Conference on NLS, Chernogolovka, 1994 | MR

[16] Benney D. J., “Some properties of long nonlinear waves”, Stud. Appl. Math., 52 (1973), 45–50 | DOI | MR | Zbl

[17] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gautier-Villar, Paris, 1910 | MR | Zbl

[18] Dubrovin B. A., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini, Terme, 1993), Lecture Notes in Math., 620, eds. M. Francaviglia, S. Greco, 1996, 120–348 | DOI | MR

[19] Dubrovin B. A., “Integrable systems and classification of $2$-dimensional topological field theories”, Integrable Systems:t he J.-L. Verdier Memorial Conference, Actes du Colloque International de Luminy (Luminy, 1991), eds. O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, Birkhäuser, Boston, MA, 1993, 313–359 | MR | Zbl

[20] Ferapontov E. V., Pavlov M. V., “Quasiclassical limit of Coupled KdV equations. Riemann invariants and multi-Hamiltonian structure”, Phys. D, 52 (1991), 211–219 | DOI | MR | Zbl

[21] Forest M. G., Lee J. E., “Geometry and modulation theory for the periodic nonlinear Schrödinger equation”, Oscillation Theory, Computation, and Methods of Compensated Compactness, IMA Vol. Math. Appl. (Minneapolis, Minn., 1985), 2, eds. C. Dafermos et al., Springer-Verlag, New York, 1986, 35–69 | DOI | MR

[22] Flaschka H., Forest M. G., McLaughlin D. W., “Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation”, Comm. Pure Appl. Math., 33 (1980), 739–784 | DOI | MR | Zbl

[23] Gibbons J., “Collisionless Boltzmann equations and integrable moment equations”, Phys. D, 3:3 (1981), 503–511 | DOI | MR

[24] Gumral H., Nutku Y., “Multi-Hamiltonian structure of equations of hydrodynamic type”, J. Math. Phys., 31:11 (1990), 2606–2611 | DOI | MR

[25] Pavlov M. V., “Integrable systems and metrics of constant curvature”, J. Nonlinear Math. Phys., 9 (2002), 173–191, Suppl. 1 | DOI | MR

[26] Oevel W., Sidorenko J., Strampp W., “Hamiltonian structures of Melnikov system and its reductions”, Inverse Problems, 9 (1993), 737–747 | DOI | MR | Zbl