Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2003_37_1_a2, author = {S. M. Natanzon}, title = {Witten {Solution} for the {Gelfand--Dikii} {Hierarchy}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {25--37}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a2/} }
S. M. Natanzon. Witten Solution for the Gelfand--Dikii Hierarchy. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 25-37. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a2/
[1] Adler M., van Moerbeke P., “A matrix integral solution to two-dimensional $W_p$-gravity”, Commun. Math. Phys., 147 (1992), 25–56 | DOI | MR | Zbl
[2] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equation”, Nonlinear integrable systems – classical theory and quantum theory, Proc. of RIMS Symposium (Kyoto 1981), World Science Publ., Singapore, 1983, 39–119 | MR
[3] Dijkgraaf R., “Intersection theory, integrable hierarchies and topological field theory”, New symmetry principles in quantum field theory (Cargese, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, 1992, 95–158 | MR
[4] Dubrovin B. A., Natanzon S. M., “Veschestvennye teta-funktsionalnye resheniya uravneniya Kadomtseva–Petviashvili”, Izv. AN SSSR, ser. matem., 52:2 (1988), 267–286 | MR | Zbl
[5] Gelfand I. M., Dikii L. A., “Rezolventa i gamiltonovy sistemy”, Funkts. analiz i ego pril., 11:2 (1977), 11–27 | MR
[6] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl
[7] Krichever I. M., “Algebro-geometricheskoe postroenie uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, Dokl. AN SSSR, 227:2 (1976), 291–294 | MR | Zbl
[8] Natanzon S. M., “Real nonsingular finite zone solutions of solution equations”, Amer. Math. Soc. Transl. (2), 170 (1995), 153–183 | MR | Zbl
[9] Natanzon S. M., “Formulas for $A_n$ and $B_n$-solutions of WDVV equations”, J. Geometry and Physics, 39 (2001), 323–336 | DOI | MR | Zbl
[10] Okounkov A., Pandharipande R., Hurwitz numbers, and matrix models, I, arXiv: /math.AG/0101147 | MR
[11] Sato M., Soliton equations and universal Grassmann manifold, Math. Lect. Notes Ser., 18, Sophia University, Tokyo, 1984 | Zbl
[12] Witten E., “Algebraic geometry associated with matrix models of two-dimensional gravity”, Topological models in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 235–269 | MR | Zbl