On Functions Whose All Critical Points Are Contained in a Ball
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 80-83
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present note, we answer the following question posed by Arnold. Consider a function with finitely many critical points on a compact connected manifold without boundary. Suppose that a ball embedded in the manifold contains all critical points of the function. Is it possible to reconstruct the manifold by a restriction of the function to the ball? It turns out that one can reconstruct only the Euler characteristic of the manifold.
Keywords:
Morse function, gradient-like vector field.
@article{FAA_2002_36_4_a9,
author = {P. E. Pushkar'},
title = {On {Functions} {Whose} {All} {Critical} {Points} {Are} {Contained} in a {Ball}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {80--83},
year = {2002},
volume = {36},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a9/}
}
P. E. Pushkar'. On Functions Whose All Critical Points Are Contained in a Ball. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 80-83. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a9/