On Functions Whose All Critical Points Are Contained in a Ball
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 80-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present note, we answer the following question posed by Arnold. Consider a function with finitely many critical points on a compact connected manifold without boundary. Suppose that a ball embedded in the manifold contains all critical points of the function. Is it possible to reconstruct the manifold by a restriction of the function to the ball? It turns out that one can reconstruct only the Euler characteristic of the manifold.
Keywords: Morse function, gradient-like vector field.
@article{FAA_2002_36_4_a9,
     author = {P. E. Pushkar'},
     title = {On {Functions} {Whose} {All} {Critical} {Points} {Are} {Contained} in a {Ball}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--83},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a9/}
}
TY  - JOUR
AU  - P. E. Pushkar'
TI  - On Functions Whose All Critical Points Are Contained in a Ball
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 80
EP  - 83
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a9/
LA  - ru
ID  - FAA_2002_36_4_a9
ER  - 
%0 Journal Article
%A P. E. Pushkar'
%T On Functions Whose All Critical Points Are Contained in a Ball
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 80-83
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a9/
%G ru
%F FAA_2002_36_4_a9
P. E. Pushkar'. On Functions Whose All Critical Points Are Contained in a Ball. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 80-83. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a9/

[1] Arnold V. I., Zadachi Arnolda, FAZIS, M., 2000 | MR

[2] Milnor Dzh., Teorema ob $h$-kobordizme, Mir, M., 1969 | MR