Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2002_36_4_a6, author = {V. P. Kostov}, title = {Root {Configurations} for {Hyperbolic} {Polynomials} of {Degree} 3, 4, and 5}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {71--74}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a6/} }
V. P. Kostov. Root Configurations for Hyperbolic Polynomials of Degree 3, 4, and 5. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 71-74. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a6/
[1] Anderson B., “Polynomial root dragging”, Amer. Math. Monthly, 100 (1993), 864–866 | DOI | MR | Zbl
[2] Arnold V. I., “Giperbolicheskie mnogochleny i otobrazheniya Vandermonda”, Funkts. analiz i ego pril., 20:2 (1986), 52–53 | MR
[3] Arnold V. I., Trudy Tbilissk. univ., 232/233, 1982, 23–29 | MR | Zbl
[4] Givental A. B., UMN, 42:2 (1987), 221–222 | MR | Zbl
[5] Kostov V. P., “Discriminant sets of families of hyperbolic polynomials of degree 4 and 5”, Serdica Math. J., 28:2 (2002), 117–152 ; Prépublication No. 620 de l'UNSA, juin 2001 | MR | Zbl
[6] Kostov V. P., Proc. Roy. Soc. Edinb., 112:3–4 (1989), 203–211 | DOI | MR | Zbl
[7] Kostov V. P., Serdica Math. J., 25:1 (1999), 47–70 | MR | Zbl
[8] Kostov V. P., Shapiro B. Z., “On arrangements of roots for a real hyperbolic polynomial and its derivatives”, Bull. Sci. Math., 126:1 (2002), 45–60 ; Prépublication No. 19 de l'Université de Nice, Juin 2001 | DOI | MR | Zbl
[9] Meguerditchian I., “A theorem on the escape from the space of hyperbolic polynomials”, Math. Z., 211 (1992), 449–460 | DOI | MR | Zbl
[10] Meguerditchian I., Géométrie du discriminant réel et des polynômes hyperboliques, Thèse de doctorat, Univ. de Rennes I, 1991 | MR | Zbl
[11] Ruskey F., “Generating linear extensions of posets by transpositions”, J. Comb. Theory, 52 (1992), 77–101 | DOI | MR
[12] Thrall M., “A combinatorial problem”, Michigan Math. J., 1 (1952), 81–88 | DOI | MR | Zbl