Root Configurations for Hyperbolic Polynomials of Degree 3, 4, and 5
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 71-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A real polynomial of one real variable is (strictly) hyperbolic if it has only real (and distinct) roots. There are $10$ (resp. $116$) possible non-degenerate configurations between the roots of a strictly hyperbolic polynomial of degree $4$ (resp. $5$) and of its derivatives (i.e., configurations without equalities between roots). The standard Rolle theorem allows $12$ (resp. $286$) such configurations. The result is based on the study of the hyperbolicity domain of the family $P(x,a)=x^n+a_1x^{n-1}+\dots+a_n$ for $n=4,5$ (i.e., of the set of values of $a\in\mathbb{R}^n$ for which the polynomial is hyperbolic) and its stratification defined by the discriminant sets $\operatorname{Res}(P^{(i)},P^{(j)})=0$, $0\le i$.
Keywords: hyperbolic polynomial, hyperbolicity domain, overdetermined stratum.
@article{FAA_2002_36_4_a6,
     author = {V. P. Kostov},
     title = {Root {Configurations} for {Hyperbolic} {Polynomials} of {Degree} 3, 4, and 5},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {71--74},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a6/}
}
TY  - JOUR
AU  - V. P. Kostov
TI  - Root Configurations for Hyperbolic Polynomials of Degree 3, 4, and 5
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 71
EP  - 74
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a6/
LA  - ru
ID  - FAA_2002_36_4_a6
ER  - 
%0 Journal Article
%A V. P. Kostov
%T Root Configurations for Hyperbolic Polynomials of Degree 3, 4, and 5
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 71-74
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a6/
%G ru
%F FAA_2002_36_4_a6
V. P. Kostov. Root Configurations for Hyperbolic Polynomials of Degree 3, 4, and 5. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 71-74. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a6/

[1] Anderson B., “Polynomial root dragging”, Amer. Math. Monthly, 100 (1993), 864–866 | DOI | MR | Zbl

[2] Arnold V. I., “Giperbolicheskie mnogochleny i otobrazheniya Vandermonda”, Funkts. analiz i ego pril., 20:2 (1986), 52–53 | MR

[3] Arnold V. I., Trudy Tbilissk. univ., 232/233, 1982, 23–29 | MR | Zbl

[4] Givental A. B., UMN, 42:2 (1987), 221–222 | MR | Zbl

[5] Kostov V. P., “Discriminant sets of families of hyperbolic polynomials of degree 4 and 5”, Serdica Math. J., 28:2 (2002), 117–152 ; Prépublication No. 620 de l'UNSA, juin 2001 | MR | Zbl

[6] Kostov V. P., Proc. Roy. Soc. Edinb., 112:3–4 (1989), 203–211 | DOI | MR | Zbl

[7] Kostov V. P., Serdica Math. J., 25:1 (1999), 47–70 | MR | Zbl

[8] Kostov V. P., Shapiro B. Z., “On arrangements of roots for a real hyperbolic polynomial and its derivatives”, Bull. Sci. Math., 126:1 (2002), 45–60 ; Prépublication No. 19 de l'Université de Nice, Juin 2001 | DOI | MR | Zbl

[9] Meguerditchian I., “A theorem on the escape from the space of hyperbolic polynomials”, Math. Z., 211 (1992), 449–460 | DOI | MR | Zbl

[10] Meguerditchian I., Géométrie du discriminant réel et des polynômes hyperboliques, Thèse de doctorat, Univ. de Rennes I, 1991 | MR | Zbl

[11] Ruskey F., “Generating linear extensions of posets by transpositions”, J. Comb. Theory, 52 (1992), 77–101 | DOI | MR

[12] Thrall M., “A combinatorial problem”, Michigan Math. J., 1 (1952), 81–88 | DOI | MR | Zbl