Kazhdan Constants of Hyperbolic Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be an infinite hyperbolic group with Kazhdan property $(T)$ and let $\varkappa(H,X)$ denote the Kazhdan constant of $H$ with respect to a generating set $X$. We prove that $\inf_{X}\varkappa(H,X)=0$, where the infimum is taken over all finite generating sets of $H$. In particular, this gives an answer to a Lubotzky question.
Keywords: Kazhdan property (T), hyperbolic group, left regular representation
Mots-clés : amenable group.
@article{FAA_2002_36_4_a3,
     author = {D. V. Osin},
     title = {Kazhdan {Constants} of {Hyperbolic} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a3/}
}
TY  - JOUR
AU  - D. V. Osin
TI  - Kazhdan Constants of Hyperbolic Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 46
EP  - 54
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a3/
LA  - ru
ID  - FAA_2002_36_4_a3
ER  - 
%0 Journal Article
%A D. V. Osin
%T Kazhdan Constants of Hyperbolic Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 46-54
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a3/
%G ru
%F FAA_2002_36_4_a3
D. V. Osin. Kazhdan Constants of Hyperbolic Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 46-54. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a3/

[1] Kazhdan D. A., “O svyazi dualnogo prostranstva gruppy so strukturoi ee zamknutykh podgrupp”, Funkts. analiz i ego pril., 1:1 (1967), 71–74 | Zbl

[2] Lindon R. S., Shupp P. E., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[3] Margulis G. A., “Yavnye konstruktsii ekspanderov”, Problemy peredachi informatsii, 9:4 (1973), 71–80 | MR | Zbl

[4] Alon N., Milman V., “$\lambda_1$, isoperimetric inequalities for graphs, and superconcentrators”, J. Comb. Theory, 38 (1985), 78–88 | MR

[5] Ballmann W., Światkowski J., “On $L^2$-cohomology and property (T) for automorphism groups of polyhedral cell complexes”, Geom. Funct. Anal., 7:4 (1997), 615–645 | DOI | MR | Zbl

[6] Brick S. G., “On Dehn functions and products of groups”, Trans. Amer. Math. Soc., 335 (1993), 369–384 | DOI | MR | Zbl

[7] Connes A., “A factor of type II$_1$ with countable fundamental group”, J. Operator Theory, 4:1 (1980), 151–153 | MR | Zbl

[8] Ghys E., de la Harpe P. (eds.), Sur les groupes hyperboliques d'après Mikhael Gromov (Swiss Seminar on Hyperbolic groups, Berne, 1988), Progr. Math., 83, Birkhäuser, 1990 | DOI | MR | Zbl

[9] de la Harpe P., Valette A., La propriété (T) de Kazhdan pour les groupes localement compacts, Asterisque, 175, 1989 | MR | Zbl

[10] Hulanicki A., “Means and Folner condition on locally compact groups”, Studia Math., 27 (1966), 87–104 | DOI | MR

[11] Gelander T., Zuk A., Dependence of Kazhdan constants on generating subsets, Preprint, 2001 | MR

[12] Gromov M., “Hyperbolic groups”, Essays in group theory, MSRI Publ., 8, ed. S. M. Gersted, Springer-Verlag, 1987, 75–263 | MR

[13] Lubotzky A., Discrete groups, expanding graphs and invariant measures, Progr. Math., 125, Birkhäuser, 1994 | MR | Zbl

[14] Margulis G., “Some remarks on invariant means”, Monatshafte für Mathematik, 90 (1980), 233–235 | DOI | MR

[15] Margulis G., Discrete subgroups of semi-simple Lie groups, Springer-Verlag, 1991 | MR

[16] von Neumann J., “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116 | DOI | Zbl

[17] Olshanskii A. Yu., “On residualing homomorphisms and $G$-subgroups of hyperbolic groups”, Internat. J. Algebra Comput., 3 (1993), 365–409 | DOI | MR

[18] Olshanskii A. Yu., “On the Bass–Lubotzky question about quotients of hyperbolic groups”, J. Algebra, 226 (2000), 807–817 | DOI | MR

[19] Shalom Y., “Explicit Kazhdan constant for representations of semisimple and arithmetic groups”, Ann. Inst. Fourier (Grenoble), 50:3 (2000), 833–863 | DOI | MR | Zbl

[20] Skandalis G., “Une notion de nucléarité en $K$-théorie (d'apreès J. Cuntz)”, $K$-theory, 1:6 (1988), 549–573 | DOI | MR | Zbl

[21] Sullivan D., “For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere on all Lebesgue measurable sets”, Bull. Amer. Math. Soc., 4 (1981), 121–123 | DOI | MR | Zbl

[22] Żuk A., “La propriété (T) de Kazhdan pour les groupes agissant sur les polyhèdres”, C. R. Acad. Sci. Paris., Ser. I Math., 323:5 (1996), 453–458 | MR | Zbl

[23] Żuk A., Property (T) and Kazhdan constants for discrete groups, Preprint, 2000 | MR