Polynomial Lie Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 18-34

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study a special class of infinite-dimensional Lie algebras that are finite-dimensional modules over a ring of polynomials. The Lie algebras of this class are said to be polynomial. Some classification results are obtained. An associative co-algebra structure on the rings $k[x_1,\dots,x_n]/(f_1,\dots,f_n)$ is introduced and, on its basis, an explicit expression for convolution matrices of invariants for isolated singularities of functions is found. The structure polynomials of moving frames defined by convolution matrices are constructed for simple singularities of the types $A$, $B$, $C$, $D$, and $E_6$.
Keywords: Lie algebra, moving frame, co-algebra.
Mots-clés : convolution of invariants
@article{FAA_2002_36_4_a1,
     author = {V. M. Buchstaber and D. V. Leikin},
     title = {Polynomial {Lie} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {18--34},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - D. V. Leikin
TI  - Polynomial Lie Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 18
EP  - 34
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a1/
LA  - ru
ID  - FAA_2002_36_4_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A D. V. Leikin
%T Polynomial Lie Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 18-34
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a1/
%G ru
%F FAA_2002_36_4_a1
V. M. Buchstaber; D. V. Leikin. Polynomial Lie Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 18-34. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a1/