Polynomial Lie Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 18-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study a special class of infinite-dimensional Lie algebras that are finite-dimensional modules over a ring of polynomials. The Lie algebras of this class are said to be polynomial. Some classification results are obtained. An associative co-algebra structure on the rings $k[x_1,\dots,x_n]/(f_1,\dots,f_n)$ is introduced and, on its basis, an explicit expression for convolution matrices of invariants for isolated singularities of functions is found. The structure polynomials of moving frames defined by convolution matrices are constructed for simple singularities of the types $A$, $B$, $C$, $D$, and $E_6$.
Keywords: Lie algebra, moving frame, co-algebra.
Mots-clés : convolution of invariants
@article{FAA_2002_36_4_a1,
     author = {V. M. Buchstaber and D. V. Leikin},
     title = {Polynomial {Lie} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {18--34},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - D. V. Leikin
TI  - Polynomial Lie Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 18
EP  - 34
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a1/
LA  - ru
ID  - FAA_2002_36_4_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A D. V. Leikin
%T Polynomial Lie Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 18-34
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a1/
%G ru
%F FAA_2002_36_4_a1
V. M. Buchstaber; D. V. Leikin. Polynomial Lie Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 18-34. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a1/

[1] Arnold V. I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996 | MR

[2] Buchstaber V. M., “Semigroups of maps into groups, operator doubles and complex cobordisms”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl., Ser. 2, 170, Amer. Math. Soc., Providence, 1995, 9–35 | MR

[3] Bukhshtaber V. M., “Gruppy polinomialnykh preobrazovanii pryamoi, neformalnye simplekticheskie mnogoobraziya i algebra Landvebera–Novikova”, UMN, 54:4 (1999), 161–162 | DOI | MR | Zbl

[4] Bukhshtaber V. M., Leikin D. V., “Algebry Li, assotsiirovannye s $\sigma$-funktsiyami, i versalnye deformatsii”, UMN, 57:3 (2002), 145–146 | DOI | MR | Zbl

[5] Bukhshtaber V. M., Leikin D. V., “Graduirovannye algebry Li, zadayuschie giperellipticheskie $\sigma$-funktsii”, Dokl. RAN, 385:5 (2002), 583–586 | MR

[6] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl., Ser. 2, 179, Amer. Math. Soc., 1997, 1–34. | MR

[7] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | MR | Zbl

[8] Givental A. B., “Svorachivanie invariantov grupp, porozhdennykh otrazheniyami i svyazannykh s prostymi osobennostyami funktsii”, Funkts. analiz i ego pril., 14:2 (1980), 4–14 | MR | Zbl

[9] Givental A. B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, MMJ, 1:4 (2001), 551–568 | DOI | MR | Zbl

[10] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lect. Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 | DOI | MR | Zbl

[11] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR

[12] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[13] Dubrovin B., Zang Y., “Frobenius manifold and Virasoro constraints”, Selecta Math. (NS), 5:4 (1999), 423–466 | DOI | MR | Zbl

[14] Zakalyukin V. M., “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funkts. analiz i ego pril., 10:2 (1976), 69–70 | MR | Zbl

[15] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[16] Novikov S. P., “Razlichnye udvoeniya algebr Khopfa. Algebry operatorov na kvantovykh gruppakh, kompleksnye kobordizmy”, UMN, 47:5 (1992), 189–190 | DOI | MR | Zbl

[17] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo Sect. Math., 27 (1980), 263–291 | MR

[18] Semenov-Tian-Shansky M. A., “Poisson Lie groups, quantum duality principle and the quantum double”, Contemp. Math., 175 (1994), 219–248 | DOI | MR | Zbl

[19] Weierstrass K., “Zur Theorie der elliptischen Funktionen”, Mathematische Werke, Vol. 2, Teubner, Berlin, 1894, 245–255 | MR

[20] Siersma D., Wall C. T. C., Zakalyukin V. (eds.), “New developments in singularity theory”, Proceedings of the NATO Advanced Study Institute held (Cambridge, July 31–August 11, 2000), NATO Science Series II: Mathematics, Physics and Chemistry, 21, Kluwer Academic Publishers, Dordrecht, 2001 | MR