Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2002_36_3_a8, author = {B. M. Gurevich and A. A. Tempel'man}, title = {Hausdorff {Dimension} of the {Set} of {Generic} {Points} for {Gibbs} {Measures}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {68--71}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a8/} }
TY - JOUR AU - B. M. Gurevich AU - A. A. Tempel'man TI - Hausdorff Dimension of the Set of Generic Points for Gibbs Measures JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2002 SP - 68 EP - 71 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a8/ LA - ru ID - FAA_2002_36_3_a8 ER -
B. M. Gurevich; A. A. Tempel'man. Hausdorff Dimension of the Set of Generic Points for Gibbs Measures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 68-71. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a8/
[1] Ruelle D., Thermodynamic Formalism, Addison-Wesley, Reading, MA, 1978 | MR | Zbl
[2] Georgi Kh.-O., Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR
[3] Tempelman A. A., Teor. ver. i prim., 44:3 (1999), 589–616 | DOI | MR
[4] Gurevich B. M., Tempelman A. A., “Khausdorfova razmernost i termodinamicheskii formalizm”, UMN, 54:2 (1999), 171–172 | DOI | MR | Zbl
[5] Cajar H., Billingsley dimension in probability spaces, Lect. Notes in Math., 892, Springer-Verlag, Berlin, 1988 | MR
[6] Olivier E., “Analyse multifractale de fonctions continues”, C. R. Acad. Sci. Paris Série I, 326 (1998), 1171–1174 | DOI | MR | Zbl
[7] Olivier E., “Dimension de Billingsley d'ensembles satures”, C. R. Acad. Sci. Paris Série I, 328 (1999), 13–16 | DOI | MR | Zbl
[8] Takens F., Verbitski E., “Multifractal analysis of local entropies for expansive homeomorphisms with specification”, Comm. Math. Phys., 203:3 (1999), 593–612 | DOI | MR | Zbl
[9] Takens F., Verbitski E., On the variational principle for the topological entropy of certain non-compact sets, Preprint, 1999 | MR
[10] Fan Ai-Hua, Feng De-Jun, J. Statist. Phys., 99:3/4 (2000), 813–856 | DOI | MR | Zbl
[11] Tempelman A. A., “Multifractal analysis of ergodic averages: a generalization of Eggleston's theorem”, J. Dynam. Control Systems, 7:4 (2001), 535–551 | DOI | MR | Zbl