Keywords: Gibbs measures, ergodic averages, entropy.
@article{FAA_2002_36_3_a8,
author = {B. M. Gurevich and A. A. Tempel'man},
title = {Hausdorff {Dimension} of the {Set} of {Generic} {Points} for {Gibbs} {Measures}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {68--71},
year = {2002},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a8/}
}
B. M. Gurevich; A. A. Tempel'man. Hausdorff Dimension of the Set of Generic Points for Gibbs Measures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 68-71. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a8/
[1] Ruelle D., Thermodynamic Formalism, Addison-Wesley, Reading, MA, 1978 | MR | Zbl
[2] Georgi Kh.-O., Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR
[3] Tempelman A. A., Teor. ver. i prim., 44:3 (1999), 589–616 | DOI | MR
[4] Gurevich B. M., Tempelman A. A., “Khausdorfova razmernost i termodinamicheskii formalizm”, UMN, 54:2 (1999), 171–172 | DOI | MR | Zbl
[5] Cajar H., Billingsley dimension in probability spaces, Lect. Notes in Math., 892, Springer-Verlag, Berlin, 1988 | MR
[6] Olivier E., “Analyse multifractale de fonctions continues”, C. R. Acad. Sci. Paris Série I, 326 (1998), 1171–1174 | DOI | MR | Zbl
[7] Olivier E., “Dimension de Billingsley d'ensembles satures”, C. R. Acad. Sci. Paris Série I, 328 (1999), 13–16 | DOI | MR | Zbl
[8] Takens F., Verbitski E., “Multifractal analysis of local entropies for expansive homeomorphisms with specification”, Comm. Math. Phys., 203:3 (1999), 593–612 | DOI | MR | Zbl
[9] Takens F., Verbitski E., On the variational principle for the topological entropy of certain non-compact sets, Preprint, 1999 | MR
[10] Fan Ai-Hua, Feng De-Jun, J. Statist. Phys., 99:3/4 (2000), 813–856 | DOI | MR | Zbl
[11] Tempelman A. A., “Multifractal analysis of ergodic averages: a generalization of Eggleston's theorem”, J. Dynam. Control Systems, 7:4 (2001), 535–551 | DOI | MR | Zbl