On the Exact $\mathcal{K}$-Monotonicity of Banach Couples
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 60-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present necessary and sufficient conditions for a Banach couple formed by the space $L_{\infty}$ and an arbitrary Lorentz space $\Lambda(\varphi)$ to be exact $\mathcal{K}$-monotone. The proof relies on the description of the set of extreme points of a $\mathcal{K}$-orbit for appropriate finite-dimensional couples. As a consequence of this description, we obtain a generalization of a well-known Markus theorem.
Keywords: Peetre $\mathcal{K}$-functional, exact $\mathcal{K}$-monotone Banach couple, Lorentz space, rearrangement, extreme point, convex hull.
@article{FAA_2002_36_3_a6,
     author = {S. V. Astashkin},
     title = {On the {Exact} $\mathcal{K}${-Monotonicity} of {Banach} {Couples}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {60--63},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a6/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On the Exact $\mathcal{K}$-Monotonicity of Banach Couples
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 60
EP  - 63
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a6/
LA  - ru
ID  - FAA_2002_36_3_a6
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On the Exact $\mathcal{K}$-Monotonicity of Banach Couples
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 60-63
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a6/
%G ru
%F FAA_2002_36_3_a6
S. V. Astashkin. On the Exact $\mathcal{K}$-Monotonicity of Banach Couples. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 60-63. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a6/

[1] Brudnyi Yu. A., Kruglyak N. Ya., DAN SSSR, 256:1 (1981), 14–17 | MR | Zbl

[2] Calderon A. P., “Spaces between $L_{1}$ and $L_{\infty }$”, Studia Math., 26:3 (1966), 273–299 | DOI | MR | Zbl

[3] Mityagin B. S., Matem. sb., 66:4 (1965), 473–482 | MR | Zbl

[4] Sedaev A. A., Semenov E. M., Optimizatsiya, 1971, no. 4(21), 98–114 | MR | Zbl

[5] Sedaev A. A., DAN SSSR, 209:4 (1973), 798–800 | MR | Zbl

[6] Peetre J., Banach Couples, Technical report, Lund, 1971

[7] Sparr G., “Interpolation of weighted $L^{p}$-spaces”, Studia Math., 62 (1978), 229–271 | DOI | MR | Zbl

[8] Cwikel M., “Monotonicity properties of interpolation spaces, II”, Ark. Mat., 19:1 (1981), 123–136 | DOI | MR | Zbl

[9] Markus A. S., DAN SSSR, 146:1 (1962), 34–36 | MR

[10] Markus A. S., “Sobstvennye i singulyarnye chisla summy i proizvedeniya lineinykh operatorov”, UMN, 19:4 (1964), 93–123 | MR | Zbl

[11] Mityagin B. S., Izv. AN SSSR, 28 (1964), 819–832 | Zbl