On the Exact $\mathcal{K}$-Monotonicity of Banach Couples
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 60-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We present necessary and sufficient conditions for a Banach couple formed by the space $L_{\infty}$ and an arbitrary Lorentz space $\Lambda(\varphi)$ to be exact $\mathcal{K}$-monotone. The proof relies on the description of the set of extreme points of a $\mathcal{K}$-orbit for appropriate finite-dimensional couples. As a
consequence of this description, we obtain a generalization of a well-known Markus theorem.
Keywords:
Peetre $\mathcal{K}$-functional, exact $\mathcal{K}$-monotone Banach couple, Lorentz space, rearrangement, extreme point, convex hull.
@article{FAA_2002_36_3_a6,
author = {S. V. Astashkin},
title = {On the {Exact} $\mathcal{K}${-Monotonicity} of {Banach} {Couples}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {60--63},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a6/}
}
S. V. Astashkin. On the Exact $\mathcal{K}$-Monotonicity of Banach Couples. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 60-63. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a6/