Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2002_36_3_a1, author = {I. Z. Golubchik and V. V. Sokolov}, title = {Compatible {Lie} {Brackets} and {Integrable} {Equations} of the {Principal} {Chiral} {Model} {Type}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {9--19}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a1/} }
TY - JOUR AU - I. Z. Golubchik AU - V. V. Sokolov TI - Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2002 SP - 9 EP - 19 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a1/ LA - ru ID - FAA_2002_36_3_a1 ER -
%0 Journal Article %A I. Z. Golubchik %A V. V. Sokolov %T Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type %J Funkcionalʹnyj analiz i ego priloženiâ %D 2002 %P 9-19 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a1/ %G ru %F FAA_2002_36_3_a1
I. Z. Golubchik; V. V. Sokolov. Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 9-19. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a1/
[1] Bolsinov A. V., “Soglasovannye skobki Puassona na algebrakh Li i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR, ser. matem., 55:1 (1991), 68–92 | MR | Zbl
[2] Bolsinov A. V., Borisov A. V., “Soglasovannye skobki Puassona na algebrakh Li”, Matem. zametki, 72:1 (2002), 11–34 | DOI | MR | Zbl
[3] Golubchik I. Z., Sokolov V. V., “Esche odna raznovidnost klassicheskogo uravneniya Yanga–Bakstera”, Funkts. analiz i ego pril., 34:4 (2000), 75–78 | DOI | MR | Zbl
[4] Golubchik I. Z., Sokolov V. V., “Obobschennye uravneniya Gaizenberga na $Z$-graduirovannykh algebrakh Li”, TMF, 120:2 (1999), 248–255 | DOI | MR | Zbl
[5] Golubchik I. Z., Sokolov V. V., “Mnogokomponentnoe obobschenie ierarkhii uravneniya Landau–Lifshitsa”, TMF, 124:1 (2000), 62–71 | DOI | MR | Zbl
[6] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 24, VINITI, M., 1984, 81–180 | MR
[7] Neretin Yu. A., “Otsenka chisla parametrov, opredelyayuschikh $n$-mernuyu algebru”, Izv. AN SSSR, ser. matem., 51:2 (1987), 306–318 | MR | Zbl
[8] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego pril., 17:4 (1983), 17–33 | MR
[9] Fuks D. B., Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl
[10] Cherednik I. V., “Ob integriruemosti dvumernogo asimmetrichnogo kiralnogo $O(3)$-polya i ego kvantovogo analoga”, Yadernaya fizika, 33 (1981), 278–282
[11] Bordag L. A., Yanovski A. B., “Polynomial Lax pairs for the $O(3)$ fields equations and the Landau–Lifshitz equation”, J. Phys. A, 28 (1995), 4007–4013 | DOI | MR | Zbl
[12] Golubchik I. Z., Sokolov V. V., “Generalized operator Yang–Baxter equations, integrable ODEs and nonassociative algebras”, Nonlinear Math. Phys., 7:2 (2000), 1–14 | DOI | MR
[13] Dorfman I. Ya., Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley Sons, Chichester, 1993 | MR
[14] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincaré, 53:1 (1990), 35–81 | MR | Zbl
[15] Page S., Richardson R. W., “Stable subalgebras of Lie algebras and associative algebras”, Trans. Amer. Math. Soc., 127 (1967), 302–312 | DOI | MR | Zbl