Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 9-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two classes of integrable nonlinear hyperbolic systems on Lie algebras. These systems generalize the principal chiral model. Each system is related to a pair of compatible Lie brackets and has a Lax representation, which is determined by the direct sum decomposition of the Lie algebra of Laurent series into the subalgebra of Taylor series and the complementary subalgebra corresponding to the pair. New examples of compatible Lie brackets are given.
Keywords: compatible Lie brackets; principal chiral model; homogeneous subalgebras.
@article{FAA_2002_36_3_a1,
     author = {I. Z. Golubchik and V. V. Sokolov},
     title = {Compatible {Lie} {Brackets} and {Integrable} {Equations} of the {Principal} {Chiral} {Model} {Type}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a1/}
}
TY  - JOUR
AU  - I. Z. Golubchik
AU  - V. V. Sokolov
TI  - Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 9
EP  - 19
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a1/
LA  - ru
ID  - FAA_2002_36_3_a1
ER  - 
%0 Journal Article
%A I. Z. Golubchik
%A V. V. Sokolov
%T Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 9-19
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a1/
%G ru
%F FAA_2002_36_3_a1
I. Z. Golubchik; V. V. Sokolov. Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 9-19. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a1/

[1] Bolsinov A. V., “Soglasovannye skobki Puassona na algebrakh Li i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR, ser. matem., 55:1 (1991), 68–92 | MR | Zbl

[2] Bolsinov A. V., Borisov A. V., “Soglasovannye skobki Puassona na algebrakh Li”, Matem. zametki, 72:1 (2002), 11–34 | DOI | MR | Zbl

[3] Golubchik I. Z., Sokolov V. V., “Esche odna raznovidnost klassicheskogo uravneniya Yanga–Bakstera”, Funkts. analiz i ego pril., 34:4 (2000), 75–78 | DOI | MR | Zbl

[4] Golubchik I. Z., Sokolov V. V., “Obobschennye uravneniya Gaizenberga na $Z$-graduirovannykh algebrakh Li”, TMF, 120:2 (1999), 248–255 | DOI | MR | Zbl

[5] Golubchik I. Z., Sokolov V. V., “Mnogokomponentnoe obobschenie ierarkhii uravneniya Landau–Lifshitsa”, TMF, 124:1 (2000), 62–71 | DOI | MR | Zbl

[6] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 24, VINITI, M., 1984, 81–180 | MR

[7] Neretin Yu. A., “Otsenka chisla parametrov, opredelyayuschikh $n$-mernuyu algebru”, Izv. AN SSSR, ser. matem., 51:2 (1987), 306–318 | MR | Zbl

[8] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego pril., 17:4 (1983), 17–33 | MR

[9] Fuks D. B., Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl

[10] Cherednik I. V., “Ob integriruemosti dvumernogo asimmetrichnogo kiralnogo $O(3)$-polya i ego kvantovogo analoga”, Yadernaya fizika, 33 (1981), 278–282

[11] Bordag L. A., Yanovski A. B., “Polynomial Lax pairs for the $O(3)$ fields equations and the Landau–Lifshitz equation”, J. Phys. A, 28 (1995), 4007–4013 | DOI | MR | Zbl

[12] Golubchik I. Z., Sokolov V. V., “Generalized operator Yang–Baxter equations, integrable ODEs and nonassociative algebras”, Nonlinear Math. Phys., 7:2 (2000), 1–14 | DOI | MR

[13] Dorfman I. Ya., Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley Sons, Chichester, 1993 | MR

[14] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincaré, 53:1 (1990), 35–81 | MR | Zbl

[15] Page S., Richardson R. W., “Stable subalgebras of Lie algebras and associative algebras”, Trans. Amer. Math. Soc., 127 (1967), 302–312 | DOI | MR | Zbl