The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 1-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper bounds for ergodic averages of topological characteristics of pseudoperiodic functions and manifolds are found in terms of the degrees of trigonometric polynomials defining these functions and manifolds. The bounds are based on finding the longest trigonometric and spherical curves of a fixed degree.
Keywords: Betti numbers, ergodic theory, characteristic numbers, perihelion, quasicrystalls, Sturm theory, Morse theory.
@article{FAA_2002_36_3_a0,
     author = {V. I. Arnol'd},
     title = {The {Longest} {Curves} of {Given} {Degree} and the {Quasicrystallic} {Harnack} {Theorem} in {Pseudoperiodic} {Topology}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a0/}
}
TY  - JOUR
AU  - V. I. Arnol'd
TI  - The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 1
EP  - 8
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a0/
LA  - ru
ID  - FAA_2002_36_3_a0
ER  - 
%0 Journal Article
%A V. I. Arnol'd
%T The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 1-8
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a0/
%G ru
%F FAA_2002_36_3_a0
V. I. Arnol'd. The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 1-8. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a0/

[1] Arnold V. I., “Remarks on quasicrystallic symmetries”, Phys. D, 33 (1988), 21–25 | DOI | MR

[2] Gusein-Zade S. M., “On the topology of quasiperiodic functions”, Pseudoperiodic Topology, Amer. Math. Soc. Transl., Ser. 2, 197, eds. V. Arnold, M. Kontsevich, and A. Zorich, 1999, 1–7 | MR | Zbl

[3] Gusein-Zade S. M., “Chislo kriticheskikh tochek kvaziperiodicheskogo potentsiala”, Funkts. analiz i ego pril., 23:2 (1989), 55–56 | MR | Zbl

[4] Weyl H., “Mean Motion, I”, Amer. J. Math., 60 (1938), 889–896 | DOI | MR | Zbl

[5] Weyl H., Mean Motion, II, 61 (1939), 143–148 | MR | Zbl

[6] Arnold V. I. i dr., Zadachi Arnolda, Fazis, M., 2000 | MR

[7] Arnold V. I., “Variatsiya krivoi”, Matem. prosveschenie, 2, M., 1957, 241–245