The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 1-8
Cet article a éte moissonné depuis la source Math-Net.Ru
Upper bounds for ergodic averages of topological characteristics of pseudoperiodic functions and manifolds are found in terms of the degrees of trigonometric polynomials defining these functions and manifolds. The bounds are based on finding the longest trigonometric and spherical curves of a fixed degree.
Keywords:
Betti numbers, ergodic theory, characteristic numbers, perihelion, quasicrystalls, Sturm theory, Morse theory.
@article{FAA_2002_36_3_a0,
author = {V. I. Arnol'd},
title = {The {Longest} {Curves} of {Given} {Degree} and the {Quasicrystallic} {Harnack} {Theorem} in {Pseudoperiodic} {Topology}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--8},
year = {2002},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a0/}
}
TY - JOUR AU - V. I. Arnol'd TI - The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2002 SP - 1 EP - 8 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a0/ LA - ru ID - FAA_2002_36_3_a0 ER -
V. I. Arnol'd. The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 1-8. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a0/
[1] Arnold V. I., “Remarks on quasicrystallic symmetries”, Phys. D, 33 (1988), 21–25 | DOI | MR
[2] Gusein-Zade S. M., “On the topology of quasiperiodic functions”, Pseudoperiodic Topology, Amer. Math. Soc. Transl., Ser. 2, 197, eds. V. Arnold, M. Kontsevich, and A. Zorich, 1999, 1–7 | MR | Zbl
[3] Gusein-Zade S. M., “Chislo kriticheskikh tochek kvaziperiodicheskogo potentsiala”, Funkts. analiz i ego pril., 23:2 (1989), 55–56 | MR | Zbl
[4] Weyl H., “Mean Motion, I”, Amer. J. Math., 60 (1938), 889–896 | DOI | MR | Zbl
[5] Weyl H., Mean Motion, II, 61 (1939), 143–148 | MR | Zbl
[6] Arnold V. I. i dr., Zadachi Arnolda, Fazis, M., 2000 | MR
[7] Arnold V. I., “Variatsiya krivoi”, Matem. prosveschenie, 2, M., 1957, 241–245