Optimality Conditions for Smooth Monge Solutions of the Monge--Kantorovich problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 38-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Monge–Kantorovich problem (MKP) with given marginals defined on closed domains $X\subset\mathbb{R}^n$, $Y\subset\mathbb{R}^m$ and a smooth cost function $c\colon X\times Y\to\mathbb{R}$ is considered. Conditions are obtained (both necessary ones and sufficient ones) for the optimality of a Monge solution generated by a smooth measure-preserving map $f\colon X\to Y$. The proofs are based on an optimality criterion for a general MKP in terms of nonemptiness of the sets $Q_0(\zeta)=\{u\in\mathbb{R}^X:u(x)-u(z)\le\zeta(x,z)$ for all $x,z\in X\}$ for special functions $\zeta$ on $X\times X$ generated by $c$ and $f$. Also, earlier results by the author are used when considering the above-mentioned nonemptiness conditions for the case of smooth $\zeta$.
Keywords: Monge–Kantorovich problem, marginal
Mots-clés : Monge solution.
@article{FAA_2002_36_2_a3,
     author = {V. L. Levin},
     title = {Optimality {Conditions} for {Smooth} {Monge} {Solutions} of the {Monge--Kantorovich} problem},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--44},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a3/}
}
TY  - JOUR
AU  - V. L. Levin
TI  - Optimality Conditions for Smooth Monge Solutions of the Monge--Kantorovich problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 38
EP  - 44
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a3/
LA  - ru
ID  - FAA_2002_36_2_a3
ER  - 
%0 Journal Article
%A V. L. Levin
%T Optimality Conditions for Smooth Monge Solutions of the Monge--Kantorovich problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 38-44
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a3/
%G ru
%F FAA_2002_36_2_a3
V. L. Levin. Optimality Conditions for Smooth Monge Solutions of the Monge--Kantorovich problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 38-44. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a3/

[1] Sudakov V. N., Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii, Trudy MIAN, 141, 1976 | MR | Zbl

[2] Brenier Y., “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure. Appl. Math., 44 (1991), 375–417 | DOI | MR | Zbl

[3] Gangbo W., McCann R. J., “The geometry of optimal transportation”, Acta Math., 177 (1996), 113–161 | DOI | MR | Zbl

[4] Levin V. L., “Suschestvovanie i edinstvennost sokhranyayuschego meru optimalnogo otobrazheniya v obschei zadache Monzha–Kantorovicha”, Funkts. analiz i ego pril., 32:3 (1998), 79–82 | DOI | MR | Zbl

[5] Levin V. L., “Abstract cyclical monotonicity and Monge solutions for the general Monge–Kantorovich problem”, Set-Valued Analysis, 7 (1999), 7–32 | DOI | MR | Zbl

[6] Rachev S. T., Rüschendorf L., Mass Transportation Problems, Vol. 1: Theory, Vol. 2: Applications, Springer-Verlag, Berlin, 1998 | MR | Zbl

[7] Levin V. L., “Formula dlya optimalnogo znacheniya zadachi Monzha–Kantorovicha s gladkoi funktsiei stoimosti i kharakterizatsiya tsiklicheski monotonnykh otobrazhenii”, Matem. sb., 181:12 (1990), 1694–1709 | MR

[8] Levin V. L., “Reduced cost functions and their applications”, J. Math. Economics, 28 (1997), 155–186 | DOI | MR | Zbl

[9] Levin V. L., “A superlinear multifunction arising in connection with mass transfer problems”, Set-Valued Analysis, 4:1 (1996), 41–65 | DOI | MR | Zbl

[10] Levin V. L., “K teorii dvoistvennosti dlya netopologicheskikh variantov zadachi o peremeschenii mass”, Matem. sb., 188:4 (1997), 95–126 | DOI | MR | Zbl

[11] Levin V. L., “The Monge–Kantorovich problems and stochastic preference relations”, Adv. Math. Economics, 3 (2001), 97–124 | DOI | MR | Zbl