Optimality Conditions for Smooth Monge Solutions of the Monge--Kantorovich problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 38-44
Voir la notice de l'article provenant de la source Math-Net.Ru
The Monge–Kantorovich problem (MKP) with given marginals defined on closed domains $X\subset\mathbb{R}^n$, $Y\subset\mathbb{R}^m$ and a smooth cost function $c\colon X\times Y\to\mathbb{R}$ is considered. Conditions are obtained (both necessary ones and sufficient ones) for the optimality of a Monge solution generated by a smooth measure-preserving map $f\colon X\to Y$. The proofs are based on an optimality criterion for a general MKP in terms of nonemptiness of the sets
$Q_0(\zeta)=\{u\in\mathbb{R}^X:u(x)-u(z)\le\zeta(x,z)$ for all $x,z\in X\}$ for special functions $\zeta$ on $X\times X$ generated by $c$ and $f$. Also, earlier results by the author are used when considering the
above-mentioned nonemptiness conditions for the case of smooth $\zeta$.
Keywords:
Monge–Kantorovich problem, marginal
Mots-clés : Monge solution.
Mots-clés : Monge solution.
@article{FAA_2002_36_2_a3,
author = {V. L. Levin},
title = {Optimality {Conditions} for {Smooth} {Monge} {Solutions} of the {Monge--Kantorovich} problem},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {38--44},
publisher = {mathdoc},
volume = {36},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a3/}
}
TY - JOUR AU - V. L. Levin TI - Optimality Conditions for Smooth Monge Solutions of the Monge--Kantorovich problem JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2002 SP - 38 EP - 44 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a3/ LA - ru ID - FAA_2002_36_2_a3 ER -
V. L. Levin. Optimality Conditions for Smooth Monge Solutions of the Monge--Kantorovich problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 38-44. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a3/