Optimization in Mean and Phase Transitions in Controlled Dynamical Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The time mean of a smooth objective function along a phase trajectory of a controlled dynamical system is maximized. The simplest singularities of the dependence of the optimal mean value on the parameter in generic one-parameter families of controlled systems of this kind are listed. It turns out that the most common generic stable singularity is the discontinuity of the first or second derivative of the optimal mean value with respect to the parameter.
Keywords: time mean, generic singularities, variational problems, mixed strategies, Harnack theorem, Sturm theorem.
@article{FAA_2002_36_2_a0,
     author = {V. I. Arnol'd},
     title = {Optimization in {Mean} and {Phase} {Transitions} in {Controlled} {Dynamical} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a0/}
}
TY  - JOUR
AU  - V. I. Arnol'd
TI  - Optimization in Mean and Phase Transitions in Controlled Dynamical Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 1
EP  - 11
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a0/
LA  - ru
ID  - FAA_2002_36_2_a0
ER  - 
%0 Journal Article
%A V. I. Arnol'd
%T Optimization in Mean and Phase Transitions in Controlled Dynamical Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 1-11
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a0/
%G ru
%F FAA_2002_36_2_a0
V. I. Arnol'd. Optimization in Mean and Phase Transitions in Controlled Dynamical Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a0/

[1] Arnold V. I., “Vypuklye obolochki i povyshenie proizvoditelnosti sistem pri pulsiruyuschei zagruzke”, Sib. matem. zhurnal, 28:4 (1987), 27–31 | MR

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, I, Nauka, M., 1982 | MR

[3] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., “Osobennosti I. Lokalnaya i globalnaya teoriya”, Dinamicheskie sistemy - 6, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 6, VINITI, M., 1988, 5–250 | MR

[4] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., Osobennosti II. Klassifikatsiya i prilozheniya. Dinamicheskie sistemy-8, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 39, VINITI, M., 1989 | MR

[5] Arnold V. I., Teoriya katastrof, Nauka, M., 1990 | MR

[6] Gusein-Zade S. M., “On the topology of quasiperiodic functions”, Pseudoperiodic Topology, Amer. Math. Soc. Transl. Ser. 2, 197, eds. V. Arnold, M. Kontsevich, and A. Zorich, 1999, 1–8 | MR

[7] Gusein-Zade S. M., “Chislo kriticheskikh tochek kvaziperiodicheskogo potentsiala”, Funkts. analiz i ego pril., 23:2 (1989), 55–56 | MR | Zbl

[8] Arnold V. I., “Remarks on quasicrystallic symmetries”, Phys. D, 33 (1988), 21–25 | DOI | MR