Diffeomorphisms of the Circle and the Beurling--Helson Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 30-35
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the algebra $A(\mathbb{T})$ of absolutely convergent Fourier series on the circle $\mathbb{T}$. According to the Beurling–Helson theorem, the condition $\|e^{in\varphi}\|_A=O(1)$, $n\in\mathbb{Z}$, implies that $\varphi$ is trivial: $\varphi(t)=mt+\alpha$. We construct a nontrivial diffeomorphism $\varphi$ of $\mathbb{T}$ onto itself such that $\|e^{in\varphi}\|_A=O(\gamma(|n|)\log|n|)$, where $\gamma(n)$ is an arbitrary given sequence with $\gamma(n)\to+\infty$. By analogy with a conjecture due to Kahane, it is natural to
suppose that this rate of growth is the slowest possible.
@article{FAA_2002_36_1_a2,
author = {V. V. Lebedev},
title = {Diffeomorphisms of the {Circle} and the {Beurling--Helson} {Theorem}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {30--35},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a2/}
}
V. V. Lebedev. Diffeomorphisms of the Circle and the Beurling--Helson Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 30-35. http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a2/