Diffeomorphisms of the Circle and the Beurling–Helson Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 30-35
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the algebra $A(\mathbb{T})$ of absolutely convergent Fourier series on the circle $\mathbb{T}$. According to the Beurling–Helson theorem, the condition $\|e^{in\varphi}\|_A=O(1)$, $n\in\mathbb{Z}$, implies that $\varphi$ is trivial: $\varphi(t)=mt+\alpha$. We construct a nontrivial diffeomorphism $\varphi$ of $\mathbb{T}$ onto itself such that $\|e^{in\varphi}\|_A=O(\gamma(|n|)\log|n|)$, where $\gamma(n)$ is an arbitrary given sequence with $\gamma(n)\to+\infty$. By analogy with a conjecture due to Kahane, it is natural to suppose that this rate of growth is the slowest possible.
@article{FAA_2002_36_1_a2,
author = {V. V. Lebedev},
title = {Diffeomorphisms of the {Circle} and the {Beurling{\textendash}Helson} {Theorem}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {30--35},
year = {2002},
volume = {36},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a2/}
}
V. V. Lebedev. Diffeomorphisms of the Circle and the Beurling–Helson Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 30-35. http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a2/
[1] Beurling A., Helson H., “Fourier–Stiltjes transforms with bounded powers”, Math. Scand., 1 (1953), 120–126 | DOI | MR | Zbl
[2] Kakhan Zh.-P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976
[3] Kahane J.-P., “Quatre leçons sur les homéomorphismes du circle et les séries de Fourier”, Topics in Modern Harmonic Analysis, Vol. II, Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955–990 | MR
[4] Leibenzon Z. L., “O koltse funktsii s absolyutno skhodyaschimisya ryadami Fure”, UMN, 9:3(61) (1954), 157–162 | MR | Zbl
[5] Lebedev V., Olevskiĭ A., “$C^1$ changes of variable: Beurling–Helson type theorem and Hörmander conjecture on Fourier multipliers”, Geom. Funct. Anal. (GAFA), 4:2 (1994), 213–235 | DOI | MR | Zbl