Diffeomorphisms of the Circle and the Beurling--Helson Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 30-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the algebra $A(\mathbb{T})$ of absolutely convergent Fourier series on the circle $\mathbb{T}$. According to the Beurling–Helson theorem, the condition $\|e^{in\varphi}\|_A=O(1)$, $n\in\mathbb{Z}$, implies that $\varphi$ is trivial: $\varphi(t)=mt+\alpha$. We construct a nontrivial diffeomorphism $\varphi$ of $\mathbb{T}$ onto itself such that $\|e^{in\varphi}\|_A=O(\gamma(|n|)\log|n|)$, where $\gamma(n)$ is an arbitrary given sequence with $\gamma(n)\to+\infty$. By analogy with a conjecture due to Kahane, it is natural to suppose that this rate of growth is the slowest possible.
@article{FAA_2002_36_1_a2,
     author = {V. V. Lebedev},
     title = {Diffeomorphisms of the {Circle} and the {Beurling--Helson} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {30--35},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a2/}
}
TY  - JOUR
AU  - V. V. Lebedev
TI  - Diffeomorphisms of the Circle and the Beurling--Helson Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 30
EP  - 35
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a2/
LA  - ru
ID  - FAA_2002_36_1_a2
ER  - 
%0 Journal Article
%A V. V. Lebedev
%T Diffeomorphisms of the Circle and the Beurling--Helson Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 30-35
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a2/
%G ru
%F FAA_2002_36_1_a2
V. V. Lebedev. Diffeomorphisms of the Circle and the Beurling--Helson Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 30-35. http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a2/

[1] Beurling A., Helson H., “Fourier–Stiltjes transforms with bounded powers”, Math. Scand., 1 (1953), 120–126 | DOI | MR | Zbl

[2] Kakhan Zh.-P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[3] Kahane J.-P., “Quatre leçons sur les homéomorphismes du circle et les séries de Fourier”, Topics in Modern Harmonic Analysis, Vol. II, Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955–990 | MR

[4] Leibenzon Z. L., “O koltse funktsii s absolyutno skhodyaschimisya ryadami Fure”, UMN, 9:3(61) (1954), 157–162 | MR | Zbl

[5] Lebedev V., Olevskiĭ A., “$C^1$ changes of variable: Beurling–Helson type theorem and Hörmander conjecture on Fourier multipliers”, Geom. Funct. Anal. (GAFA), 4:2 (1994), 213–235 | DOI | MR | Zbl