The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 38-53

Voir la notice de l'article provenant de la source Math-Net.Ru

In the two-dimensional case, the generalized Radon transform takes each function supported in a disk to the values of the integrals of that function over a family of curves. We assume that the curves differ only slightly from straight lines and the network formed by these curves has the same topological structure as the network of straight lines. Thus, the generalized Radon transform specifies a function on the set of straight lines. Under these conditions, we obtain a solution of the inversion problem for the generalized Radon transform and indicate a Cavalieri condition describing the range of this transform in the space of functions on the set of straight lines.
@article{FAA_2001_35_4_a5,
     author = {D. A. Popov},
     title = {The {Generalized} {Radon} {Transform} on the {Plane,} the {Inverse} {Transform,} and the {Cavalieri} {Conditions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--53},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a5/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 38
EP  - 53
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a5/
LA  - ru
ID  - FAA_2001_35_4_a5
ER  - 
%0 Journal Article
%A D. A. Popov
%T The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 38-53
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a5/
%G ru
%F FAA_2001_35_4_a5
D. A. Popov. The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 38-53. http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a5/