A Constructive Proof of the Generalized Gelfand Isomorphism
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 20-25
Cet article a éte moissonné depuis la source Math-Net.Ru
Using an analog of the classical Frobenius recursion, we define the notion of a Frobenius $n$-homomorphism. For $n=1$, this is an ordinary ring homomorphism. We give a constructive proof of the following theorem. Let $X$ be a compact Hausdorff space, $\operatorname{Sym}^n(X)$ the $n$th symmetric power of $X$, and $\mathbb{C}(X)$ the algebra of continuous complex-valued functions on $X$ with the sup-norm; then the evaluation map $\mathcal{E}\colon\operatorname{Sym}^n(X)\to\operatorname{Hom}(\mathbb{C}(X),\mathbb{C})$ defined by the formula $[x_1,\dots,x_n]\to(g\to\sum g(x_k))$ identifies the space $\operatorname{Sym}^n(X)$ with the space of all Frobenius $n$-homomorphisms of the algebra $\mathbb{C}(X)$ into $\mathbb{C}$ with the weak topology.
@article{FAA_2001_35_4_a2,
author = {V. M. Buchstaber and E. G. Rees},
title = {A {Constructive} {Proof} of the {Generalized} {Gelfand} {Isomorphism}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {20--25},
year = {2001},
volume = {35},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a2/}
}
V. M. Buchstaber; E. G. Rees. A Constructive Proof of the Generalized Gelfand Isomorphism. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 20-25. http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a2/
[1] Buchstaber V. M., Rees E. G., The Gelfand map and symmetric products, Preprint, 2001 ; arXiv: /math.CO/0109122 | MR