An Ellipsoidal Billiard with a Quadratic Potential
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

There exists an infinite hierarchy of integrable generalizations of the geodesic flow on an $n$-dimensional ellipsoid. These generalizations describe the motion of a point in the force fields of certain polynomial potentials. In the limit as one of semiaxes of the ellipsoid tends to zero, one obtains integrable mappings corresponding to billiards with polynomial potentials inside an $(n-1)$-dimensional ellipsoid. In this paper, for the first time we give explicit expressions for the ellipsoidal billiard with a quadratic (Hooke) potential, its representation in Lax form, and a theta function solution. We also indicate the generating function of the restriction of the potential billiard map to a level set of an energy type integral. The method we use to obtain theta function solutions is different from those applied earlier and is based on the calculation of limit values of meromorphic functions on generalized Jacobians.
@article{FAA_2001_35_3_a4,
     author = {Yu. N. Fedorov},
     title = {An {Ellipsoidal} {Billiard} with a {Quadratic} {Potential}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a4/}
}
TY  - JOUR
AU  - Yu. N. Fedorov
TI  - An Ellipsoidal Billiard with a Quadratic Potential
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 48
EP  - 59
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a4/
LA  - ru
ID  - FAA_2001_35_3_a4
ER  - 
%0 Journal Article
%A Yu. N. Fedorov
%T An Ellipsoidal Billiard with a Quadratic Potential
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 48-59
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a4/
%G ru
%F FAA_2001_35_3_a4
Yu. N. Fedorov. An Ellipsoidal Billiard with a Quadratic Potential. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 48-59. http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a4/

[1] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M.-L., 1941

[2] Veselov A. P., “Integriruemye sistemy s diskretnym vremenem i raznostnye operatory”, Funkts. analiz i ego pril., 22:2 (1988), 1–13 | MR

[3] Veselov A. P., “Integriruemye lagranzhevy sootvetstviya i faktorizatsiya matrichnykh polinomov”, Funkts. analiz i ego pril., 25:2 (1991), 38–49 | MR | Zbl

[4] Serr Zh., Algebraicheskie gruppy i polya klassov, Mir, M., 1982

[5] Adams M. R., Harnad J., Hurtubise J., “Dual moment maps into loop algebras”, Lett. Math. Phys., 20 (1990), 299–308 | DOI | MR | Zbl

[6] Buchstaber V. M., Enolskii V. Z., Leikin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Amer. Math. Soc. Transl., Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 | MR

[7] Clebsch A., Gordan P., Theorie der abelschen Funktionen, Teubner, Leipzig, 1866 | MR

[8] Gagnon L., Harnad J., Hurtubise J., Winternitz P., “Abelian integrals and the reduction method for an integrable Hamiltonian system”, J. Math. Phys., 26 (1885), 1605–1612 | DOI | MR

[9] Gavrilov L., “Generalized Jacobians of spectral curves and completely integrable systems”, Math. Z., 230:3 (1999), 487–508 | DOI | MR | Zbl

[10] Fay J., Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer-Verlag, 1973 | DOI | MR | Zbl

[11] Fedorov Yu., “Classical integrable systems related to generalized Jacobians”, Acta Appl. Math., 55:3 (1999), 151–201 | DOI | MR

[12] Kozlov V. V., Treshchev D. V., Billiards. A generic introduction to the dynamics of systems with impacts, Transl. Math. Monographs, 89, Providence, RI, 1991 | DOI | MR | Zbl

[13] Moser J., “Geometry of quadrics and spectral theory”, Chern Symposium (Berkeley 1979), 1980, 147–188 | MR | Zbl

[14] Moser J., Veselov A., “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Comm. Math. Phys., 139 (1991), 217–243 | DOI | MR | Zbl

[15] Weierstrass K., “Über die geodätischen Linien auf dem dreiachsigen Ellipsoid”, Mathematische Werke I, New York, 1967, 257–266 | MR

[16] Rauch-Wojciechowski S., Tsiganov A. V., “Integrable one-particle potentials related to the Neumann system and the Jacobi problem of geodesic motion on an ellipsoid”, Phys. Lett. A, 107:3 (1985), 106–111 | DOI | MR