Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2001_35_2_a2, author = {O. I. Mokhov}, title = {Compatible and {Almost} {Compatible} {Pseudo-Riemannian} {Metrics}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {24--36}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a2/} }
O. I. Mokhov. Compatible and Almost Compatible Pseudo-Riemannian Metrics. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 24-36. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a2/
[1] Dubrovin B., “Geometry of 2D topological field theories”, Lect. Notes Math., 1620, 1996, 120–348 ; arXiv: /hep-th/9407018 | DOI | MR | Zbl
[2] Dubrovin B., Differential geometry of the space of orbits of a Coxeter group, Preprint SISSA-29/93/FM | MR
[3] Dubrovin B., Flat pencils of metrics and Frobenius manifolds, Preprint SISSA 25/98/FM | MR
[4] Ferapontov E. V., “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in topology and mathematical physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl
[5] Mokhov O. I., “O soglasovannykh puassonovykh strukturakh gidrodinamicheskogo tipa”, UMN, 52:6 (1997), 171–172 | DOI | MR
[6] Mokhov O. I., “O soglasovannykh potentsialnykh deformatsiyakh frobeniusovykh algebr i uravneniyakh assotsiativnosti”, UMN, 53:2 (1998), 153–154 | DOI | MR | Zbl
[7] Mokhov O. I., “Soglasovannye puassonovy struktury gidrodinamicheskogo tipa i uravneniya assotsiativnosti”, Trudy MIRAN, 225, 1999, 284–300 | MR | Zbl
[8] Mokhov O. I., “Compatible Poisson structures of hydrodynamic type and the equations of associativity in two-dimensional topological field theory”, Reports on Mathematical Physics, 43:1–2 (1999), 247–256 | DOI | MR | Zbl
[9] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[10] Mokhov O. I., Ferapontov E. V., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl
[11] Ferapontov E. V., “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl
[12] Ferapontov E. V., “Gamiltonovye sistemy gidrodinamicheskogo tipa i ikh realizatsiya na giperpoverkhnostyakh psevdoevklidova prostranstva”, Itogi nauki i tekhniki. Problemy geometrii, 22, VINITI, M., 1990, 59–96 | MR
[13] Mokhov O. I., “Hamiltonian systems of hydrodynamic type and constant curvature metrics”, Phys. Letters. A, 166:3, 4 (1992), 215–216 | DOI | MR
[14] Mokhov O. I., Ferapontov E. V., “Gamiltonovy pary, porozhdaemye kososimmetrichnymi tenzorami Killinga na prostranstvakh postoyannoi krivizny”, Funkts. analiz i ego pril., 28:2 (1994), 60–63 | MR | Zbl
[15] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[16] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, John Wiley Sons, Chichester, England, 1993 | MR
[17] Mokhov O. I., “Lokalnye skobki Puassona tretego poryadka”, UMN, 40:5 (1985), 257–258 | MR | Zbl
[18] Mokhov O. I., “Gamiltonovy differentsialnye operatory i kontaktnaya geometriya”, Funkts. analiz i ego pril., 21:3 (1987), 53–60 | MR | Zbl
[19] Cooke D. B., “Classification results and the Darboux theorem for low-order Hamiltonian operators”, J. Math. Phys., 32:1 (1991), 109–119 | DOI | MR | Zbl
[20] Cooke D. B., “Compatibility conditions for Hamiltonian pairs”, J. Math. Phys., 32:11 (1991), 3071–3076 | DOI | MR | Zbl
[21] Nutku Y., “On a new class of completely integrable nonlinear wave equations. II: Multi-Hamiltonian structure”, J. Math. Phys., 28:11 (1987), 2579–2585 | DOI | MR | Zbl
[22] Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 13:2 (1951), 200–212 | DOI | MR | Zbl
[23] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes. 2nd ed., Gauthier-Villars, Paris, 1910 | MR | Zbl
[24] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[25] Mokhov O. I., “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl
[26] Alekseev V. L., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s uravneniyami Uizema”, UMN, 50:6 (1995), 165–166 | MR | Zbl