Compatible and Almost Compatible Pseudo-Riemannian Metrics
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 24-36

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the notions of compatible and almost compatible Riemannian and pseudo-Riemannian metrics are introduced. These notions are motivated by the theory of compatible Poisson structures of hydrodynamic type (local and nonlocal) and generalize the notion of flat pencils of metrics, which plays an important role in the theory of integrable systems of hydrodynamic type and Dubrovin's theory of Frobenius manifolds. Compatible metrics generate compatible Poisson structures of hydrodynamic type (these structures are local for flat metrics and nonlocal if the metrics are not flat). For the “nonsingular” case in which the eigenvalues of a pair of metrics are distinct, we obtain a complete explicit description of compatible and almost compatible metrics.
@article{FAA_2001_35_2_a2,
     author = {O. I. Mokhov},
     title = {Compatible and {Almost} {Compatible} {Pseudo-Riemannian} {Metrics}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {24--36},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a2/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Compatible and Almost Compatible Pseudo-Riemannian Metrics
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 24
EP  - 36
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a2/
LA  - ru
ID  - FAA_2001_35_2_a2
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Compatible and Almost Compatible Pseudo-Riemannian Metrics
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 24-36
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a2/
%G ru
%F FAA_2001_35_2_a2
O. I. Mokhov. Compatible and Almost Compatible Pseudo-Riemannian Metrics. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 24-36. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a2/