The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 12-23

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the maximal isoperimetric function on a Riemannian manifold of conformally hyperbolic type can be reduced to the linear canonical form $P(x)=x$ by a conformal change of the Riemannian metric. In other words, the isoperimetric inequality $P(V(D))\le S(\partial D)$, relating the volume $V(D)$ of a domain $D$ to the area $S(\partial D)$ of its boundary, can be reduced to the form $V(D)\le S(\partial D)$, known for the Lobachevskii hyperbolic space.
@article{FAA_2001_35_2_a1,
     author = {V. A. Zorich and V. M. Kesel'man},
     title = {The {Isoperimetric} {Inequality} on {Manifolds} of {Conformally} {Hyperbolic} {Type}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {12--23},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a1/}
}
TY  - JOUR
AU  - V. A. Zorich
AU  - V. M. Kesel'man
TI  - The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 12
EP  - 23
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a1/
LA  - ru
ID  - FAA_2001_35_2_a1
ER  - 
%0 Journal Article
%A V. A. Zorich
%A V. M. Kesel'man
%T The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 12-23
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a1/
%G ru
%F FAA_2001_35_2_a1
V. A. Zorich; V. M. Kesel'man. The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 12-23. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a1/