Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2001_35_2_a1, author = {V. A. Zorich and V. M. Kesel'man}, title = {The {Isoperimetric} {Inequality} on {Manifolds} of {Conformally} {Hyperbolic} {Type}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {12--23}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a1/} }
TY - JOUR AU - V. A. Zorich AU - V. M. Kesel'man TI - The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2001 SP - 12 EP - 23 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a1/ LA - ru ID - FAA_2001_35_2_a1 ER -
V. A. Zorich; V. M. Kesel'man. The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 12-23. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a1/
[1] Zorich V. A., Keselman V. M., “O konformnom tipe rimanova mnogoobraziya”, Funkts. analiz i ego pril., 30:2 (1996), 40–55 | DOI | MR | Zbl
[2] Zorich V. A., “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl
[3] Grimaldi R., Pansu P., “Sur la croissance du volume dans une classe conforme”, J. Math. Pures Appl., 9(71):1 (1992), 1–19 | MR
[4] Zorich V. A., Keselman V. M., “Kanonicheskii vid izoperimetricheskogo neravenstva na mnogoobraziyakh konformno-giperbolicheskogo tipa”, UMN, 54:3 (1999), 165–166 | DOI | MR | Zbl
[5] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser, Boston–Basel–Berlin, 1999, with appendices by Katz M., Pansu P., and Semmes S. | MR | Zbl
[6] Zorich V. A., Keselman V. M., “Konformnyi tip i izoperimetricheskaya razmernost rimanova mnogoobraziya”, Matem. zametki, 63:3 (1998), 379–385 | DOI | MR | Zbl
[7] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo Leningradskogo un-ta, L., 1985 | MR
[8] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR
[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[10] Heinonen J., Kilpelainen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, 1993 | MR | Zbl
[11] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl
[12] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[13] Ahlfors L., “Sur le type d'une surface de Riemann”, C. R. Acad. Sci. Paris, Ser. A, 201 (1935), 30–32 | MR | Zbl
[14] Ahlfors L., Calabi E., Morse M., Sario L., Spencer D. (eds.), Contributions to the theory of Riemann surfaces, Centennial celebration of Riemann's dissertation, Ann. of Math. Stud., 30, Princeton University Press, Princeton, 1953 | MR | Zbl
[15] Cheeger J., “A lower bound for the smallest eigenvalue of the Laplacian”, Problems in Analysis: A Symposium in Honor of Salomon Bochner, Princeton University Press, Princeton, 1970, 195–199 | MR | Zbl
[16] Cheng S. V., Yau S. T., “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28 (1975), 333–354 | DOI | MR | Zbl
[17] Milnor J., “On deciding whether a surface is parabolic or hyperbolic”, Amer. Math. Monthly, 84 (1977), 43–46 | DOI | MR | Zbl
[18] Varopoulos N., Saloff-Coste L., Coulhon T., Analysis and geometry on groups, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[19] Grigor'yan A., “Analytic and geometric background of recurrence and non-explosion of the Brownian motion”, Bull. Amer. Math. Soc. (N.S.), 36:2 (1999), 135–249 | DOI | MR
[20] Grigor'yan A., “Isoperimetric inequality and capacities on Riemannian manifolds”, Oper. Theory Adv. Appl., 109, Birkhäuser Verlag, Basel, 1999, 139–153 | MR