@article{FAA_2001_35_2_a0,
author = {N. E. Dobrinskaya},
title = {Classification {Problem} for {Quasitoric} {Manifolds} over a {Given} {Simple} {Polytope}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {3--11},
year = {2001},
volume = {35},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a0/}
}
N. E. Dobrinskaya. Classification Problem for Quasitoric Manifolds over a Given Simple Polytope. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a0/
[1] Bukhshtaber V. M., Rai N., “Toricheskie mnogoobraziya i kompleksnye kobordizmy”, UMN, 53:2 (1998), 139–141 | DOI | MR
[2] Davis M., “Smooth $G$-manifolds as collection of fiber bundles”, Pacific J. Math., 77:2 (1978), 315–363 | DOI | MR | Zbl
[3] Davis M., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[4] Kleinschmidt P., “A classification of toric varieties with few generators”, Aequationes Math., 35:2–3 (1988), 254–266 | DOI | MR | Zbl
[5] Oda T., “Convex bodies and algebraic geometry. An introduction to the theory of toric varieties”, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988 | MR
[6] Orlik P., Raymond F., “Actions of the torus on $4$-manifolds”, Trans. Amer. Math. Soc., 152 (1970), 531–559 | DOI | MR | Zbl