Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2001_35_2_a0, author = {N. E. Dobrinskaya}, title = {Classification {Problem} for {Quasitoric} {Manifolds} over a {Given} {Simple} {Polytope}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--11}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a0/} }
TY - JOUR AU - N. E. Dobrinskaya TI - Classification Problem for Quasitoric Manifolds over a Given Simple Polytope JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2001 SP - 3 EP - 11 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a0/ LA - ru ID - FAA_2001_35_2_a0 ER -
N. E. Dobrinskaya. Classification Problem for Quasitoric Manifolds over a Given Simple Polytope. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a0/
[1] Bukhshtaber V. M., Rai N., “Toricheskie mnogoobraziya i kompleksnye kobordizmy”, UMN, 53:2 (1998), 139–141 | DOI | MR
[2] Davis M., “Smooth $G$-manifolds as collection of fiber bundles”, Pacific J. Math., 77:2 (1978), 315–363 | DOI | MR | Zbl
[3] Davis M., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[4] Kleinschmidt P., “A classification of toric varieties with few generators”, Aequationes Math., 35:2–3 (1988), 254–266 | DOI | MR | Zbl
[5] Oda T., “Convex bodies and algebraic geometry. An introduction to the theory of toric varieties”, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988 | MR
[6] Orlik P., Raymond F., “Actions of the torus on $4$-manifolds”, Trans. Amer. Math. Soc., 152 (1970), 531–559 | DOI | MR | Zbl