To the Problem of Passage to the Limit in Divergent Nonuniformly Elliptic Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 23-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

A weighted Sobolev space is constructed in which smooth functions are not dense and their closure is of codimension one. With the help of this weighted space, counterexamples are constructed to natural hypotheses on the passage to the limit in non-uniformly-elliptic equations and on the structure of the limit equation.
@article{FAA_2001_35_1_a2,
     author = {V. V. Zhikov},
     title = {To the {Problem} of {Passage} to the {Limit} in {Divergent} {Nonuniformly} {Elliptic} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {23--39},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - To the Problem of Passage to the Limit in Divergent Nonuniformly Elliptic Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 23
EP  - 39
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a2/
LA  - ru
ID  - FAA_2001_35_1_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T To the Problem of Passage to the Limit in Divergent Nonuniformly Elliptic Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 23-39
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a2/
%G ru
%F FAA_2001_35_1_a2
V. V. Zhikov. To the Problem of Passage to the Limit in Divergent Nonuniformly Elliptic Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a2/

[1] Lavrentiev M., “Sur quelques problems du calcul variations”, Ann Mat. Pura Appl., 4 (1926), 7–28 | DOI | MR

[2] Zhikov V. V., “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | DOI | MR | Zbl

[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1982 | MR

[4] Mosco U., “Composite media and asymptotic Dirichlet forms”, J. Funct. Anal., 123 (1994), 368–421 | DOI | MR | Zbl

[5] Attouch H., Variational convergence for functions and operators, Pitman, London, 1984 | MR | Zbl

[6] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya odnogo klassa funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR, ser. matem., 47:5 (1983), 961–998 | MR | Zbl

[7] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[8] Jikov V. V., Kozlov S. M., Oleinik O. A., Homogenization of differential operators and integral functionals, Springer-Verlag, 1994 | MR

[9] Zhikov V. V., “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Matem. sb., 183:8 (1992), 47–84 | MR | Zbl