Modules of Differential Operators on the Real Line
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 16-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The space $\mathcal{D}^k$ of $k$th-order linear differential operators on $\mathbb{R}$ is equipped with a natural two-parameter family of structures of $\operatorname{Diff}(\mathbb{R})$-modules. To specify this family, one considers the action of differential operators on tensor densities. We give a classification of these modules.
@article{FAA_2001_35_1_a1,
     author = {H. Gargoubi and V. Yu. Ovsienko},
     title = {Modules of {Differential} {Operators} on the {Real} {Line}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a1/}
}
TY  - JOUR
AU  - H. Gargoubi
AU  - V. Yu. Ovsienko
TI  - Modules of Differential Operators on the Real Line
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 16
EP  - 22
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a1/
LA  - ru
ID  - FAA_2001_35_1_a1
ER  - 
%0 Journal Article
%A H. Gargoubi
%A V. Yu. Ovsienko
%T Modules of Differential Operators on the Real Line
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 16-22
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a1/
%G ru
%F FAA_2001_35_1_a1
H. Gargoubi; V. Yu. Ovsienko. Modules of Differential Operators on the Real Line. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 16-22. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a1/

[1] Bouarroudj S., Ovsienko V., “Three cocycles on $\operatorname{Diff}(S^1)$ generalizing the Schwarzian derivative”, Internat. Math. Res. Notices, 1998, no. 1, 25–39 | DOI | MR | Zbl

[2] Cohen P., Manin Yu., Zagier D., “Automorphic pseudodifferential operators”, Progr. Nonlinear Diff. Eq. Appl., 26, Birkhäuser, Boston, 1997, 17–47 | MR | Zbl

[3] Duval C., Ovsienko V., “Space of second order linear differential operators as a module over the Lie algebra of vector fields”, Adv. in Math., 132:2 (1997), 316–333 | DOI | MR | Zbl

[4] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier, 49:6 (1999), 1999–2029 | DOI | MR | Zbl

[5] Feigin B. L., Fuks D. B., “Gomologii algebry Li vektornykh polei na pryamoi”, Funkts. analiz i ego pril., 14:3 (1980), 45–60 | MR | Zbl

[6] Fuks D. B., Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl

[7] Gargoubi H., Modules des opérateurs différentiels sur la droite: géométrie projective et cohomologie de Gelfand–Fuchs, Thesis, Université de Provence, 1997

[8] Gargoubi H., Ovsienko V., “Space of linear differential operators on the real line as a module over the Lie algebra of vector fields”, Internat. Math. Res. Notices, 1996, no. 5, 235–251 | DOI | MR | Zbl

[9] Janson S., Peetre J., “A new generalization of Hankel operators (the case of higher weights)”, Math. Nachr., 132 (1987), 313–328 | DOI | MR | Zbl

[10] Kirillov A. A., “Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments”, Twistor geometry and nonlinear systems, Lect. Notes in Math., 970, 1982, 101–123 | DOI | MR | Zbl

[11] Lecomte P. B. A., On the cohomology of $\operatorname{sl}(m+1,\mathbb{R})$ acting on differential operators and $\operatorname{sl}(m+1,\mathbb{R})$-equivariant symbol, Preprint Université de Liège, 1998 | MR

[12] Lecomte P. B. A., Mathonet P., Tousset E., “Comparison of some modules of the Lie algebra of vector fields”, Indag. Math., NS, 7:4 (1996), 461–471 | DOI | MR | Zbl

[13] Lecomte P. B. A., Ovsienko V., “Projectively invariant symbol calculus”, Lett. Math. Phys., 49:3 (1999), 173–196 | DOI | MR | Zbl

[14] Lecomte P. B. A., Ovsienko V., “Cohomology of the Vector fields Lie algebra and modules of differential operators on a smooth manifold”, Comp. Math., 124:1 (2000), 95–110 | DOI | MR | Zbl

[15] Martin C., Piard A., “Classification of the indecomposable bounded admissible modules over the Virasoro Lie algebra with weightspaces of dimension not exceeding two”, Comm. Math. Phys., 150:3 (1992), 465–493 | DOI | MR | Zbl

[16] Mathonet P., “Intertwining operators between some spaces of differential operators on a manifold”, Comm. Algebra, 27:2 (1999), 755–776 | DOI | MR | Zbl

[17] Nijenhuis A., Richardson R. W., “Deformations of homomorphisms of Lie algebras”, Bull. Amer. Math. Soc., 73 (1967), 175–179 | DOI | MR | Zbl

[18] Richardson R. W., “Deformations of subalgebras of Lie algebras”, J. Diff. Geom., 3 (1969), 289–308 | MR | Zbl