Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_4_a4, author = {P. E. Pushkar'}, title = {Lagrange {Intersections} in a {Symplectic} {Space}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {64--70}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a4/} }
P. E. Pushkar'. Lagrange Intersections in a Symplectic Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 64-70. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a4/
[1] Arnold V. I., “O kharakteristicheskom klasse, vkhodyaschem v uslovie kvantovaniya”, Funkts. analiz i ego pril., 1:1 (1967), 1–14 | MR
[2] Arnold V. I., “Teoremy Shturma i simplekticheskaya geometriya”, Funkts. analiz i ego pril., 19:4 (1985), 1–10 | DOI | MR
[3] Arnold V. I., “Mody i kvazimody”, Funkts. analiz i ego pril., 6:2 (1972), 12–20 | MR
[4] Lerman L. M., “O gamiltonovykh sistemakh s petlei separatrisy sedlo-tsentra”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. sb. nauchn. trudov pod red. N. A. Leontovich-Andronovoi, Gorkovskii gosuniversitet, Gorkii, 1987, 89–103 | MR | Zbl
[5] Koltsova O. Yu., Lerman L. M., “Transverse Poincaré homoclinic orbits in a $2N$-dimensional Hamiltonian system close to the system with a loop to a saddle-center”, Int. J. Bifurcation and Chaos, 6:6 (1996), 991–1006 | DOI | MR | Zbl
[6] Koltsova O. Yu., Lerman L. M., “Transversalnye gomoklinicheskie traektorii Puankare okolo petli sedlo-tsentra v $2N$-mernoi gamiltonovoi sisteme”, Dokl. RAN, 359:4 (1998), 448–451 | MR
[7] Floer A., “Morse theory for Lagrangian intersections”, J. Diff. Geom., 28 (1988), 513–547 | MR | Zbl
[8] Floer A., “Witten's complex and infinite dimensional Morse theory”, J. Diff. Geom., 30 (1989), 207–221 | MR | Zbl
[9] Givental A. B., “Nonlinear generalization of the Maslov index”, Adv. Soviet Math., 1 (1990), 71–103 | MR | Zbl