Lagrange Intersections in a Symplectic Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 64-70
Cet article a éte moissonné depuis la source Math-Net.Ru
The two-dimensional torus $|z_1|=|z_2|=1$ in the symplectic space $\mathbb{C}^2$ and the image of it under a linear symplectomorphism have at least eight common points (counted according to their multiplicities). We also prove a many-dimensional version of this theorem of symplectic linear algebra.
@article{FAA_2000_34_4_a4,
author = {P. E. Pushkar'},
title = {Lagrange {Intersections} in a {Symplectic} {Space}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {64--70},
year = {2000},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a4/}
}
P. E. Pushkar'. Lagrange Intersections in a Symplectic Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 64-70. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a4/