Lagrange Intersections in a Symplectic Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 64-70

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-dimensional torus $|z_1|=|z_2|=1$ in the symplectic space $\mathbb{C}^2$ and the image of it under a linear symplectomorphism have at least eight common points (counted according to their multiplicities). We also prove a many-dimensional version of this theorem of symplectic linear algebra.
@article{FAA_2000_34_4_a4,
     author = {P. E. Pushkar'},
     title = {Lagrange {Intersections} in a {Symplectic} {Space}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {64--70},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a4/}
}
TY  - JOUR
AU  - P. E. Pushkar'
TI  - Lagrange Intersections in a Symplectic Space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 64
EP  - 70
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a4/
LA  - ru
ID  - FAA_2000_34_4_a4
ER  - 
%0 Journal Article
%A P. E. Pushkar'
%T Lagrange Intersections in a Symplectic Space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 64-70
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a4/
%G ru
%F FAA_2000_34_4_a4
P. E. Pushkar'. Lagrange Intersections in a Symplectic Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 64-70. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a4/