Special Points of Surfaces in the Three-Dimensional Projective Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 49-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, $3$-jets of two-dimensional surfaces in the three-dimensional affine space are classified. It is shown that there are exactly $22$ types of co-oriented $3$-jets of surfaces. The action of the group of affine transformations on the space of $3$-jets is studied. We calculate a universal complex of singularities that is related to the orbits of the group action. Two linear homology relations for the numbers of special elliptic, hyperbolic, and parabolic points of a compact two-dimensional surface embedded in $\mathbb{R}^3$ are indicated. The stratification of some real cubic surfaces with respect to the types of $3$-jets is described.
@article{FAA_2000_34_4_a3,
     author = {D. A. Panov},
     title = {Special {Points} of {Surfaces} in the {Three-Dimensional} {Projective} {Space}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--63},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a3/}
}
TY  - JOUR
AU  - D. A. Panov
TI  - Special Points of Surfaces in the Three-Dimensional Projective Space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 49
EP  - 63
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a3/
LA  - ru
ID  - FAA_2000_34_4_a3
ER  - 
%0 Journal Article
%A D. A. Panov
%T Special Points of Surfaces in the Three-Dimensional Projective Space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 49-63
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a3/
%G ru
%F FAA_2000_34_4_a3
D. A. Panov. Special Points of Surfaces in the Three-Dimensional Projective Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 49-63. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a3/

[1] Vassiliev V. A., Lagrange and Legendre characteristic classes, 2nd ed., Gordon Breach Publ., 1993 ; Vasilev V. A., Lagranzhevy i lezhandrovy kharakteristicheskie klassy, MTsNMO, M., 2000 | MR

[2] Platonova O. A., “Proektirovanie gladkikh poverkhnostei”, Trudy seminara im. I. G. Petrovskogo, 10, 1984, 135–149 | MR | Zbl

[3] Segre B., The nonsingular cubic surfaces, Clarendon Press, Oxford, 1942 | MR | Zbl

[4] Arnold V. I., “Topologicheskie voprosy teorii rasprostraneniya voln”, UMN, 51:1 (1996), 3–50 | DOI | MR

[5] Bott R., Tu L. V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[6] Arnold V. I., “Zamechaniya o parabolicheskikh krivykh na poverkhnostyakh i mnogomernoi teorii Mëbiusa–Shturma”, Funkts. analiz i ego pril., 31:4 (1997), 3–18 | DOI | MR | Zbl