Theta Function Solutions of the Schlesinger System and the Ernst Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 18-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a link between the Schlesinger system and the Ernst equation (the stationary axisymmetric Einstein equation) on the level of algebro-geometric solutions. We calculate all metric coefficients corresponding to general algebro-geometric solutions of the Ernst equation.
@article{FAA_2000_34_4_a1,
     author = {D. A. Korotkin and V. B. Matveev},
     title = {Theta {Function} {Solutions} of the {Schlesinger} {System} and the {Ernst} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {18--34},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a1/}
}
TY  - JOUR
AU  - D. A. Korotkin
AU  - V. B. Matveev
TI  - Theta Function Solutions of the Schlesinger System and the Ernst Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 18
EP  - 34
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a1/
LA  - ru
ID  - FAA_2000_34_4_a1
ER  - 
%0 Journal Article
%A D. A. Korotkin
%A V. B. Matveev
%T Theta Function Solutions of the Schlesinger System and the Ernst Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 18-34
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a1/
%G ru
%F FAA_2000_34_4_a1
D. A. Korotkin; V. B. Matveev. Theta Function Solutions of the Schlesinger System and the Ernst Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 18-34. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a1/

[1] Belinskii V. A., Zakharov V. E., “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 48 (1978), 985

[2] Maison D., “Are the stationary, axially symmetric Einstein equations completely integrable?”, Phys. Rev. Lett., 41 (1978), 521 | DOI | MR

[3] Bianchi L., Lezioni di geometria differenziale, Pisa, 1909

[4] Korotkin D. A., “Konechnozonnye resheniya statsionarnogo aksialno-simmetrichnogo uravneniya Einshteina v vakuume”, TMF, 77:1 (1988), 25–41 | MR

[5] Korotkin D. A., Matveev V. B., “Algebrogeometricheskie resheniya uravneniya gravitatsii”, Algebra i analiz, 1:2 (1989), 77–102 | MR | Zbl

[6] Korotkin D., “Elliptic solutions of stationary axisymmetric Einstein equation”, Class. Quantum Gravity, 10 (1993), 2587–2613 | DOI | MR | Zbl

[7] Neugebauer G., Meinel R., “General relativistic gravitational field of the rigidly rotating disk of dust: solution in terms of ultraelliptic functions”, Phys. Rev. Lett., 75 (1995), 3046–3048 | DOI | MR

[8] Neugebauer G., Meinel R., “Solutions to Einstein's field equation related to Jacobi inversion problem”, Phys. Lett. A, 210 (1996), 160 | DOI | MR

[9] Korotkin D., “Some remarks on finite-gap solutions of Ernst equation”, Phys. Lett. A, 229 (1997), 195–199 | DOI | MR | Zbl

[10] Klein C., Richter O., “Explicit solutions of Riemann–Hilbert problem for the Ernst equation”, Phys. Rev. D, 57 (1998), 857–862 | DOI | MR

[11] Zverovich E. I., “Granichnye zadachi v teorii analiticheskikh funktsii v gëlderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26 (1971), 117–192 | MR

[12] Schlesinger L., “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten”, J. Reine Angew. Math., 141 (1912), 96–145 | DOI | MR | Zbl

[13] Kitaev A., Korotkin D., “On solutions of the Schlesinger equations in terms of theta-functions”, Intern. Math. Research Notices, 17 (1998), 877–906 | DOI | MR

[14] Korotkin D., Nicolai H., “Isomonodromic quantization of dimensionally-reduced gravity”, Nuclear Phys. B, 475 (1996), 397–439 | DOI | MR | Zbl

[15] Fay John D., Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl

[16] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I”, Phys. D, 2 (1981), 306–352 | DOI | MR

[17] Krichever I. M., “Metod usredneniya dlya dvumernykh (integriruemykh) uravnenii”, Funkts. analiz i ego pril., 22:3 (1988), 37–52 | MR | Zbl

[18] Dubrovin B., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lect. Notes in Math., 1620, eds. Francaviglia M. and Greco S., Springer-Verlag, 1996, 120–348 | DOI | MR | Zbl