Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_4_a1, author = {D. A. Korotkin and V. B. Matveev}, title = {Theta {Function} {Solutions} of the {Schlesinger} {System} and the {Ernst} {Equation}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {18--34}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a1/} }
TY - JOUR AU - D. A. Korotkin AU - V. B. Matveev TI - Theta Function Solutions of the Schlesinger System and the Ernst Equation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2000 SP - 18 EP - 34 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a1/ LA - ru ID - FAA_2000_34_4_a1 ER -
D. A. Korotkin; V. B. Matveev. Theta Function Solutions of the Schlesinger System and the Ernst Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 18-34. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a1/
[1] Belinskii V. A., Zakharov V. E., “Integrirovanie uravnenii Einshteina metodom obratnoi zadachi rasseyaniya i vychislenie tochnykh solitonnykh reshenii”, ZhETF, 48 (1978), 985
[2] Maison D., “Are the stationary, axially symmetric Einstein equations completely integrable?”, Phys. Rev. Lett., 41 (1978), 521 | DOI | MR
[3] Bianchi L., Lezioni di geometria differenziale, Pisa, 1909
[4] Korotkin D. A., “Konechnozonnye resheniya statsionarnogo aksialno-simmetrichnogo uravneniya Einshteina v vakuume”, TMF, 77:1 (1988), 25–41 | MR
[5] Korotkin D. A., Matveev V. B., “Algebrogeometricheskie resheniya uravneniya gravitatsii”, Algebra i analiz, 1:2 (1989), 77–102 | MR | Zbl
[6] Korotkin D., “Elliptic solutions of stationary axisymmetric Einstein equation”, Class. Quantum Gravity, 10 (1993), 2587–2613 | DOI | MR | Zbl
[7] Neugebauer G., Meinel R., “General relativistic gravitational field of the rigidly rotating disk of dust: solution in terms of ultraelliptic functions”, Phys. Rev. Lett., 75 (1995), 3046–3048 | DOI | MR
[8] Neugebauer G., Meinel R., “Solutions to Einstein's field equation related to Jacobi inversion problem”, Phys. Lett. A, 210 (1996), 160 | DOI | MR
[9] Korotkin D., “Some remarks on finite-gap solutions of Ernst equation”, Phys. Lett. A, 229 (1997), 195–199 | DOI | MR | Zbl
[10] Klein C., Richter O., “Explicit solutions of Riemann–Hilbert problem for the Ernst equation”, Phys. Rev. D, 57 (1998), 857–862 | DOI | MR
[11] Zverovich E. I., “Granichnye zadachi v teorii analiticheskikh funktsii v gëlderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26 (1971), 117–192 | MR
[12] Schlesinger L., “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten”, J. Reine Angew. Math., 141 (1912), 96–145 | DOI | MR | Zbl
[13] Kitaev A., Korotkin D., “On solutions of the Schlesinger equations in terms of theta-functions”, Intern. Math. Research Notices, 17 (1998), 877–906 | DOI | MR
[14] Korotkin D., Nicolai H., “Isomonodromic quantization of dimensionally-reduced gravity”, Nuclear Phys. B, 475 (1996), 397–439 | DOI | MR | Zbl
[15] Fay John D., Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl
[16] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I”, Phys. D, 2 (1981), 306–352 | DOI | MR
[17] Krichever I. M., “Metod usredneniya dlya dvumernykh (integriruemykh) uravnenii”, Funkts. analiz i ego pril., 22:3 (1988), 37–52 | MR | Zbl
[18] Dubrovin B., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lect. Notes in Math., 1620, eds. Francaviglia M. and Greco S., Springer-Verlag, 1996, 120–348 | DOI | MR | Zbl