Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_4_a0, author = {A. I. Bufetov}, title = {Operator {Ergodic} {Theorems} for {Actions} of {Free} {Semigroups} and {Groups}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--17}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a0/} }
A. I. Bufetov. Operator Ergodic Theorems for Actions of Free Semigroups and Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a0/
[1] Gromov M., “Hyperbolic groups”, Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, ed. Gersten S. M., Springer-Verlag, New York, 1987, 75–263 | MR
[2] Oseledets V. I., “Markovskie tsepi, kosye proizvedeniya i ergodicheskie teoremy dlya obschikh dinamicheskikh sistem”, Teoriya veroyatnostei i ee primeneniya, 10:3 (1965), 551–557 | MR | Zbl
[3] Kakutani S., “Random ergodic theorems and Markoff processes with a stable distribution”, Proc. 2nd Berkeley Symposium Math. Stat. and Prob., University of California Press, Berkeley and Los Angeles, 1951, 247–261 | MR
[4] Vershik A. M., “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, UMN, 55:4 (2000), 59–128 | DOI | MR | Zbl
[5] Vershik A. M., Nechaev S., Bikbov R., Statistical properties of braid groups in locally free approximation, Preprint IHES/M/99/45, June 1999
[6] Vershik A. M., “Chislennye kharakteristiki grupp i sootnosheniya mezhdu nimi”, Zapiski nauchnykh seminarov POMI, 256, 1999, 5–18 | MR | Zbl
[7] Grigorchuk R. I., “Individualnaya ergodicheskaya teorema dlya deistvii svobodnykh grupp”, Tezisy Tambovskoi shkoly po teorii funktsii, 1986 | Zbl
[8] Grigorchuk R. I., “Ergodicheskie teoremy dlya deistvii svobodnoi gruppy i svobodnoi polugruppy”, Matem. zametki, 65:5 (1999), 779–782 | DOI | MR
[9] Arnold V. I., Krylov A. L., “Ravnomernoe raspredelenie tochek na sfere i nekotorye ergodicheskie svoistva reshenii lineinykh obyknovennykh differentsialnykh uravnenii v kompleksnoi oblasti”, DAN SSSR, 148:1 (1963), 9–12 | MR
[10] Grigorenko L. A., “O $si$-algebre simmetrichnykh sobytii dlya schetnoi tsepi Markova”, Teoriya veroyatnostei i ee primeneniya, 24:1 (1979), 198–204 | MR | Zbl
[11] Bezhaeva Z. I., Oseledets V. I., “O simmetrichnoi sigma-algebre statsionarnogo markovskogo kharissovskogo protsessa”, Teoriya veroyatnostei i ee primeneniya, 41:4 (1996), 869–877 | DOI | MR | Zbl
[12] Dunford N., Schwartz J. T., “Convergence almost everywhere of operator averages”, J. Rational Mech. Anal., 5 (1956), 129–178 | MR | Zbl
[13] Hopf E., “The general temporarily discrete Markoff process”, J. Rational Mech. Anal., 3 (1954), 13–45 | MR | Zbl
[14] Kolmogorov A. N., “Lokalnaya predelnaya teorema dlya klassicheskikh tsepei Markova”, Izv. AN SSSR, 13:4 (1949), 281–300 | MR | Zbl
[15] Gurevich B. M., “Lokalnaya predelnaya teorema dlya tsepei Markova i usloviya tipa regulyarnosti”, Teoriya veroyatnostei i ee primeneniya, 13:1 (1968), 183–190 | Zbl
[16] Nevo A., “Harmonic analysis and pointwise ergodic theorems for non-commuting transformations”, J. Amer. Math. Soc., 7 (1994), 875–902 | DOI | MR | Zbl
[17] Cannon J., “The combinatorial structure of cocompact discrete hyperbolic groups”, Geom. Dedicata, 16 (1984), 123–148 | DOI | MR | Zbl
[18] Nevo A., Stein E. M., “A generalization of Birkhoff's pointwise ergodic theorem”, Acta Math., 173 (1994), 135–154 | DOI | MR | Zbl
[19] Guivarc'h Y., “Généralisation d'un théorème de von Neumann”, C. R. Acad. Sci Paris, 268 (1969), 1020–1023 | MR
[20] Lorch E. R., “Means of iterated transformations in reflexive vector spaces”, Bull. Amer. Math. Soc., 45 (1939), 945–947 | DOI | MR | Zbl
[21] Krengel U., Ergodic Theorems, Walter de Gruyter, Berlin–New York, 1985 | MR | Zbl
[22] Bufetov A. I., “Ergodicheskie teoremy dlya neskolkikh otobrazhenii”, UMN, 54:4 (1999), 159–160 | DOI | MR | Zbl
[23] Akcoglu M., “A pointwise ergodic theorem in $L_p$-spaces”, Canad. J. Math., 27 (1975), 1075–1082 | DOI | MR | Zbl