Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 37-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study singularities of quasiconformal immersions of Riemannian manifolds and show that the phenomenon of compulsory continuation holds in dimension $n\ge3$. In particular, this result in a stronger version of the Picard theorem—one without omitted values.
@article{FAA_2000_34_3_a3,
     author = {V. A. Zorich},
     title = {Quasiconformal {Immersions} of {Riemannian} {Manifolds} and a {Picard} {Type} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 37
EP  - 48
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/
LA  - ru
ID  - FAA_2000_34_3_a3
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 37-48
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/
%G ru
%F FAA_2000_34_3_a3
V. A. Zorich. Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 37-48. http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/

[1] Ahlfors L., Beurling A., “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[2] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[3] Gehring F. W., “Extremal length definitions for the conformal capacity of rings in space”, Michigan Math. J., 9 (1962), 137–150 | DOI | MR | Zbl

[4] Aikawa H., Ohtsuka M., “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 61–89 | MR

[5] Zorich V. A., Keselman V. M., “O konformnom tipe rimanova mnogoobraziya”, Funkts. analiz i ego pril., 30:2 (1996), 40–55 | DOI | MR | Zbl

[6] Zorich V. A., “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl

[7] Zorich V. A., “Teorema M. A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Matem. sb., 74 (1967), 417–433 | Zbl

[8] Lavrentev M. A., “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, DAN SSSR, 20 (1938), 241–242 | MR

[9] Zorich V. A., “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Lecture Notes in Math., 1508, Springer-Verlag, Berlin, 1992, 131–148 | MR

[10] Gromov M., “Hyperbolic manifolds, groups and actions”, Proceedings of the 1978 Stony Brook Conference, Ann. Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR

[11] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser, Boston–Basel–Berlin, 1999, with appendices by Katz M., Pansu P., and Semmes S. | MR | Zbl