Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_3_a3, author = {V. A. Zorich}, title = {Quasiconformal {Immersions} of {Riemannian} {Manifolds} and a {Picard} {Type} {Theorem}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {37--48}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/} }
V. A. Zorich. Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 37-48. http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/
[1] Ahlfors L., Beurling A., “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl
[2] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[3] Gehring F. W., “Extremal length definitions for the conformal capacity of rings in space”, Michigan Math. J., 9 (1962), 137–150 | DOI | MR | Zbl
[4] Aikawa H., Ohtsuka M., “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 61–89 | MR
[5] Zorich V. A., Keselman V. M., “O konformnom tipe rimanova mnogoobraziya”, Funkts. analiz i ego pril., 30:2 (1996), 40–55 | DOI | MR | Zbl
[6] Zorich V. A., “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl
[7] Zorich V. A., “Teorema M. A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Matem. sb., 74 (1967), 417–433 | Zbl
[8] Lavrentev M. A., “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, DAN SSSR, 20 (1938), 241–242 | MR
[9] Zorich V. A., “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Lecture Notes in Math., 1508, Springer-Verlag, Berlin, 1992, 131–148 | MR
[10] Gromov M., “Hyperbolic manifolds, groups and actions”, Proceedings of the 1978 Stony Brook Conference, Ann. Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR
[11] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser, Boston–Basel–Berlin, 1999, with appendices by Katz M., Pansu P., and Semmes S. | MR | Zbl