Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 37-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We study singularities of quasiconformal immersions of Riemannian manifolds and show that the phenomenon of compulsory continuation holds in dimension $n\ge3$. In particular, this result in a stronger version of the Picard theorem—one without omitted values.
@article{FAA_2000_34_3_a3,
     author = {V. A. Zorich},
     title = {Quasiconformal {Immersions} of {Riemannian} {Manifolds} and a {Picard} {Type} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 37
EP  - 48
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/
LA  - ru
ID  - FAA_2000_34_3_a3
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 37-48
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/
%G ru
%F FAA_2000_34_3_a3
V. A. Zorich. Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 37-48. http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/