Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 37-48
Voir la notice de l'article provenant de la source Math-Net.Ru
We study singularities of quasiconformal immersions of Riemannian manifolds and show that the phenomenon of compulsory continuation holds in dimension $n\ge3$. In particular, this result in a stronger version of the Picard theorem—one without omitted values.
@article{FAA_2000_34_3_a3,
author = {V. A. Zorich},
title = {Quasiconformal {Immersions} of {Riemannian} {Manifolds} and a {Picard} {Type} {Theorem}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {37--48},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/}
}
V. A. Zorich. Quasiconformal Immersions of Riemannian Manifolds and a Picard Type Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 37-48. http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a3/