Integrals in Involution for Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 26-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a complex Hamiltonian system with $n$ degrees of freedom has $n$ functionally independent meromorphic first integrals in involution and the monodromy group of the corresponding variational system along some phase curve has $n$ pairwise skew-orthogonal two-dimensional invariant subspaces, then the restriction of the action of this group to each of these subspaces has a rational first integral. The result thus obtained is applied to natural mechanical systems with homogeneous potential, in particular, to the $n$-body problem.
@article{FAA_2000_34_3_a2,
     author = {S. L. Ziglin},
     title = {Integrals in {Involution} for {Groups} of {Linear} {Symplectic} {Transformations} and {Natural} {Mechanical} {Systems} with {Homogeneous} {Potential}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--36},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a2/}
}
TY  - JOUR
AU  - S. L. Ziglin
TI  - Integrals in Involution for Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 26
EP  - 36
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a2/
LA  - ru
ID  - FAA_2000_34_3_a2
ER  - 
%0 Journal Article
%A S. L. Ziglin
%T Integrals in Involution for Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 26-36
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a2/
%G ru
%F FAA_2000_34_3_a2
S. L. Ziglin. Integrals in Involution for Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 26-36. http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a2/