Integrals in Involution for Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 26-36
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if a complex Hamiltonian system with $n$ degrees of freedom has $n$ functionally independent meromorphic first integrals in involution and the monodromy group of the corresponding variational system along some phase curve has $n$ pairwise skew-orthogonal two-dimensional invariant subspaces, then the restriction of the action of this group to each of these subspaces has a rational first integral. The result thus obtained is applied to natural mechanical systems with homogeneous potential, in particular, to the $n$-body problem.
@article{FAA_2000_34_3_a2,
author = {S. L. Ziglin},
title = {Integrals in {Involution} for {Groups} of {Linear} {Symplectic} {Transformations} and {Natural} {Mechanical} {Systems} with {Homogeneous} {Potential}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {26--36},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a2/}
}
TY - JOUR AU - S. L. Ziglin TI - Integrals in Involution for Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2000 SP - 26 EP - 36 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a2/ LA - ru ID - FAA_2000_34_3_a2 ER -
%0 Journal Article %A S. L. Ziglin %T Integrals in Involution for Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential %J Funkcionalʹnyj analiz i ego priloženiâ %D 2000 %P 26-36 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a2/ %G ru %F FAA_2000_34_3_a2
S. L. Ziglin. Integrals in Involution for Groups of Linear Symplectic Transformations and Natural Mechanical Systems with Homogeneous Potential. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 26-36. http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a2/