Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 1-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an explicit realization of the Jacobi and Kummer varieties for trigonal curves of genus $g$ ($\gcd(g,3)=1$) of the form $$ y^3=x^{g+1}+\sum_{\alpha,\beta}\lambda_{3\alpha +(g+1)\beta}x^{\alpha}y^{\beta},\qquad 0\le3\alpha+(g+1)\beta 3g+3, $$ as algebraic subvarieties in $\mathbb{C}^{4g+\delta}$, where $\delta=2(g-3[g/3])$, and in $\mathbb{C}^{g(g+1)/2}$. We uniformize these varieties with the help of $\wp$-functions of several variables defined on the universal space of Jacobians of such curves. By way of application, we obtain a system of nonlinear partial differential equations integrable in trigonal $\wp$-functions. This system in particular contains the oussinesq equation.
@article{FAA_2000_34_3_a0,
     author = {V. M. Buchstaber and D. V. Leikin and V. Z. \`Enol'skii},
     title = {Uniformization of {Jacobi} {Varieties} of {Trigonal} {Curves} and {Nonlinear} {Differential} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - D. V. Leikin
AU  - V. Z. Ènol'skii
TI  - Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 1
EP  - 16
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a0/
LA  - ru
ID  - FAA_2000_34_3_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A D. V. Leikin
%A V. Z. Ènol'skii
%T Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 1-16
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a0/
%G ru
%F FAA_2000_34_3_a0
V. M. Buchstaber; D. V. Leikin; V. Z. Ènol'skii. Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 1-16. http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a0/

[1] Baker H. F., Multiply Periodic Functions, Cambridge University Press, Cambridge, 1907 | Zbl

[2] Baker H. F., Abelian Functions, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[3] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Reviews in Mathematics and Mathematical Physics, 10, no. 2, eds. Novikov S. P., Krichever I. M., Gordon Breach, London, 1997, 1–125 | MR

[4] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR | Zbl

[5] Buchstaber V. M., Rees E. G., Symmetric Powers of Algebraic Varieties, Preprint, Edinburgh University, Dec., 1999. | MR

[6] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[7] Fay J. D., Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[9] Kats V. G., Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[10] Klein F., “Über hyperelliptische Sigmafunctionen”, Math. Ann., 32 (1888), 351–380 | DOI | MR

[11] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[12] Chebotarev N. G., Teoriya algebraicheskikh funktsii, OGIZ, M., 1948